Analytical solution for dynamic evaporation of liquid in isothermal condition

Luiz Eduardo Czelusniak luiz.czelusniak@partner.kit.edu Lattice Boltzmann Research Group (LBRG), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany Institute for Applied and Numerical Mathematics (IANM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany    Tim Niklas Bingert Lattice Boltzmann Research Group (LBRG), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany Institute of Mechanical Process Engineering (MVM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany    Stephan Simonis Institute for Applied and Numerical Mathematics (IANM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany Lattice Boltzmann Research Group (LBRG), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany    Alexander J. Wagner Department of Physics, North Dakota State University (NDSU), Fargo, ND 58102, United States    Mathias J. Krause Lattice Boltzmann Research Group (LBRG), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany Institute for Applied and Numerical Mathematics (IANM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany Institute of Mechanical Process Engineering (MVM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
(June 2, 2025)
Abstract

An analytical solution based on a diffuse interface model is presented for an isothermal evaporation problem under sub-saturation pressure. The macroscopic equations are derived from the free-energy method, widely recognized in the lattice Boltzmann literature, distinguishing our approach from conventional evaporation models that rely on jump conditions or pure kinetic theory. The interface behavior is fully described by differential equations, eliminating the need for assumptions such as local equilibrium at the interface. We derive an exact analytical solution for the inviscid case and propose an approximate solution when viscosity effects are considered. Our model unveils a novel relationship between evaporation rate and viscosity, providing new insights that have not been thoroughly explored in the literature. The analytical results are validated through numerical simulations using the open-source parallel library OpenLB, demonstrating excellent agreement in predicting the physical behavior of the evaporation phenomena within the framework of diffuse interface methods.

preprint: AIP/123-QED

I Introduction

Understanding and predicting the evaporation phenomena is crucial for engineering applications, e.g. food dryingFathi et al. (2022), industrial dehydrationAl-Jammali et al. (2023), distillation processSkiborowski (2023), vacuum evaporationAbdelrahman et al. (2025), paint dryingDi Tullio et al. (2023), evaporative coolingAbdullah et al. (2023), steam power generationPolski et al. (2024), and others. There are different ways to study this phenomenon: analyticallyHertz (1882); Knudsen (1909); Hołyst et al. (2015); Persad and Ward (2016); Schrage (1953); Stefan (1891); Scriven (1995); Cossali and Tonini (2023); Álvarez-Hostos et al. (2024), numericallyMunicchi et al. (2022); Wang et al. (2023); Municchi et al. (2024), and experimentallyManova et al. (2022); Baptistella et al. (2023); Marchetto et al. (2024). For highly complex problems, numerical and experimental approaches are essential. However, the analytical method provides physical insights that lead to a deeper understanding of the phenomenon, making it highly valuable.

There is extensive literature on evaporation modeling. An important result is the Hertz–Knudsen relation Hertz (1882); Knudsen (1909); Hołyst et al. (2015); Persad and Ward (2016). Another significant contribution involving kinetic theory was made by Schrage Schrage (1953), who calculated evaporation fluxes of pure substances and multi-component systems. Notable results employing macroscopic phase change modeling include the one-dimensional Stefan problem Stefan (1891), originally developed for solid–liquid phase transition and Scriven’s solution Scriven (1995) for droplet evaporation. Recent articles extend these approaches to more complex situations Cossali and Tonini (2023); Álvarez-Hostos et al. (2024).

Another approach to modeling multiphase systems that has gained popularity in numerical studies is the diffuse interface model. This model treats the interface as a thin region in which fluid properties continuously transition between the vapor and liquid phases. The phase-field model Jacqmin (1999); Lamorgese et al. (2011); Kim (2012), which usually employs the Cahn–Hilliard Novick-Cohen (2008); Lee et al. (2014) or the Allen–Cahn Feng and Prohl (2003) equation, is a diffuse interface model used in combination with several numerical methods, for example: lattice Boltzmann methods (LBM) Wang et al. (2016), finite element methods (FEM) Feng et al. (2007), finite volume (FV) Qiao et al. (2015) or immersed boundary methods (IBM) Hua et al. (2014). Other examples of diffuse interface model-based methods are the free-energy Swift et al. (1996); Semprebon et al. (2016); Simonis et al. (2024) and the pseudo-potential Shan and Chen (1993, 1994) LBM, which are single-component methods capable of modeling liquid-vapor phase transition without any special treatment of the interface. Due to good parallelizability and robustness, LBM are generally well-suited for complex flow applications Ito et al. (2024); Bukreev et al. (2023a, 2024); Mink et al. (2022), even at large scales Kummerländer et al. (2024). Notably, many of the diffuse interface models listed above (or derivates thereof) are implemented in open-source libraries such as OpenLB Krause et al. (2020) and thus readily available for parallel execution on personal devices or clusters of any size.

While diffuse interface models such as Cahn–Hilliard are well-established in numerical and analytical studies of phase separationFoard and Wagner (2009), their use in analytical descriptions of liquid evaporation processes remains limited. However, these models also hold great potential for the development of analytical solutions since the fluid behavior is fully described by differential equations. This eliminates the need for assumptions such as local equilibrium at the interface, which is commonly used in sharp interface modeling. This represents a significant advancement in the analysis of non-equilibrium thermodynamics.

In this work, we employ a diffuse interface model to study the evaporation process. To simplify the problem, we consider an isothermal system subject to a sub–saturation pressure condition. A similar system was previously studied by Jamet Jamet (2004), but using a sharp interface approach. With our innovative methodology, we observed a dependence of the evaporation rate on the fluid viscosity – a behavior that has not been captured by any existing model in the literature. Finally, we derived an analytical solution for the evaporation rate in the inviscid case and an approximate solution for the viscous case. The predictions from our solutions are confirmed by simulations using an LBM implemented in the open source parallel library OpenLB Krause et al. (2020).

The practical applications of our analytical solution are as follows: Firstly, it provides predictions that can be tested in experiments to validate diffuse interface methods or suggest future corrections to this approach. Secondly, our solution can also be used to construct benchmark cases to test numerical approaches for diffuse interface models. Thirdly: predicting evaporation phenomena under sub-saturation pressure is crucial in, e.g., fuel injection systems, especially within low-pressure chambers. This process has significant implications for combustion enginesZeng et al. (2012). In future works, our approach of constructing an analytical solution can be extended to non–isothermal and multi–component problems.

The article is organized as follows: In Section II, the physical problem of isothermal evaporation under sub-saturation pressure is introduced. In Section III, the governing equations are presented. Section IV details the analytical solution procedure, including the derivation of the interface velocity and its dependence on physical parameters. In Section VI, the analytical solution is evidenced through comparisons with LBM simulations, and the influence of viscosity and pressure differences on the interface dynamics is analyzed. Finally, in Section VII, we summarize and discuss the main findings and propose directions for future work.

II Problem description

The problem of interest in this work is a dynamic isothermal liquid-vapor evaporation process similar to the one described by Jamet Jamet (2004). We consider a system with two phases (one liquid and one vapor) separated by a flat interface, which reduces to a one-dimensional case. The system has a fixed temperature T𝑇Titalic_T. In equilibrium, this system would have a homogeneous and constant pressure called saturation pressure psat(T)subscript𝑝sat𝑇p_{\mathrm{sat}}(T)italic_p start_POSTSUBSCRIPT roman_sat end_POSTSUBSCRIPT ( italic_T ). Our interest is to study what happens in this system when a pressure smaller than the saturation pressure is imposed in the vapor phase.

To illustrate this phenomenon, we use a simulation performed with the free-energy LBM formulation proposed by Wagner Wagner (2006). Figure 1 shows a representation of the simulated system. The top plot shows the density profile ρsuperscript𝜌\rho^{\ast}italic_ρ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT at two instants of time (t=200superscript𝑡200t^{\ast}=200italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 200 and t=600superscript𝑡600t^{\ast}=600italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 600). On the left and right boundaries (vapor phase) a pressure lower than the saturation pressure pv=0.99psatsubscript𝑝v0.99subscript𝑝satp_{\text{v}}=0.99p_{\text{sat}}italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT = 0.99 italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT is imposed. The superscript superscript\cdot^{\ast}⋅ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT indicates dimensionless quantities such as tsuperscript𝑡t^{\ast}italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. The definition of the dimensionless quantities is presented in Section III. The simulation details are presented in Section V.

Refer to caption
Figure 1: Top: density ρsuperscript𝜌\rho^{\ast}italic_ρ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT along domain size xsuperscript𝑥x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT at two instants tsuperscript𝑡t^{\ast}italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Bottom: velocity usuperscript𝑢u^{\ast}italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for the same conditions. Dimensionless quantities defined in (5). Simulations conducted with the model of Wagner Wagner (2006) implemented in OpenLB Krause et al. (2020) (see Section V for details).

We observe in the density profile of Figure 1 that the liquid region shrank over time, which means that the imposed boundary condition led to an evaporation process. The lower plot of Figure 1 shows the velocity profile. In the liquid region, the velocity is zero due to the problem symmetry. However, the velocity profile indicates that mass is leaving the domain through both boundaries.

This simulation was performed for a uniform dimensionless viscosity ν=1superscript𝜈1\nu^{\ast}=1italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1. We repeated the simulation for different viscosity values and recorded the interface position for several other time instants. The results are summarized in Figure 2. Two very interesting behaviors are observed. First, for sufficiently long simulation times, the "position vs. time" curve is a straight line, which implies a constant interface velocity. The second surprising result is that the interface velocity depends on the fluid viscosity. This dependence of the evaporation rate on fluid viscosity is not present in classical evaporation modelsHertz (1882); Knudsen (1909); Schrage (1953) nor in analytical solutions to evaporation problemsStefan (1891); Scriven (1995). Showing, to the best of our knowledge, a behavior that has not yet been described in the literature.

Refer to caption
Figure 2: Interface position xisuperscriptsubscript𝑥𝑖x_{i}^{\ast}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over time tsuperscript𝑡t^{\ast}italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for several viscosities νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Dimensionless quantities described in (5). Simulations conducted with the model of Wagner Wagner (2006) implemented in OpenLB Krause et al. (2020) (see Section V for details).

In the next sections, we focus on obtaining an analytical solution that describes this physical phenomenon.

III Governing equations

This problem is modeled by the one-dimensional (1D) mass and momentum conservation equations:

ρt+(ρu)x=0,𝜌𝑡𝜌𝑢𝑥0\frac{\partial\rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}=0,divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_t end_ARG + divide start_ARG ∂ ( italic_ρ italic_u ) end_ARG start_ARG ∂ italic_x end_ARG = 0 , (1a)
ρut+ρuux=px+τxxx,𝜌𝑢𝑡𝜌𝑢𝑢𝑥𝑝𝑥subscript𝜏𝑥𝑥𝑥\rho\frac{\partial u}{\partial t}+\rho u\frac{\partial u}{\partial x}=-\frac{% \partial p}{\partial x}+\frac{\partial\tau_{xx}}{\partial x},italic_ρ divide start_ARG ∂ italic_u end_ARG start_ARG ∂ italic_t end_ARG + italic_ρ italic_u divide start_ARG ∂ italic_u end_ARG start_ARG ∂ italic_x end_ARG = - divide start_ARG ∂ italic_p end_ARG start_ARG ∂ italic_x end_ARG + divide start_ARG ∂ italic_τ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_x end_ARG , (1b)

where ρ𝜌\rhoitalic_ρ denotes the density, u𝑢uitalic_u is the velocity, p𝑝pitalic_p is the pressure, and τxxsubscript𝜏𝑥𝑥\tau_{xx}italic_τ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT is the viscous stress as presented in Krüger et al.(Krüger et al., 2017, p. 6):

τxx=(43ν+νb)ρux,subscript𝜏𝑥𝑥43𝜈subscript𝜈b𝜌𝑢𝑥\tau_{xx}=\left(\frac{4}{3}\nu+\nu_{\text{b}}\right)\rho\frac{\partial u}{% \partial x},italic_τ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT = ( divide start_ARG 4 end_ARG start_ARG 3 end_ARG italic_ν + italic_ν start_POSTSUBSCRIPT b end_POSTSUBSCRIPT ) italic_ρ divide start_ARG ∂ italic_u end_ARG start_ARG ∂ italic_x end_ARG , (2)

and, unless stated otherwise, all variables depend on time t𝑡titalic_t and space x𝑥xitalic_x. The symbols ν>0𝜈0\nu>0italic_ν > 0 and νbsubscript𝜈b\nu_{\text{b}}italic_ν start_POSTSUBSCRIPT b end_POSTSUBSCRIPT in (2) represent the shear and bulk kinematic viscosity coefficients, respectively. For dilute monatomic gases, kinetic theory Vincenti et al. (1966) predicts νb=0subscript𝜈b0\nu_{\text{b}}=0italic_ν start_POSTSUBSCRIPT b end_POSTSUBSCRIPT = 0 which coincides with Stokes’ hypothesis Stokes (1845). Notably, the bulk viscosity for non-ideal fluids is a complex topic Graves and Argrow (1999); Kosuge and Aoki (2022). In addition, the stress-tensor behavior at the interface is barely described in the literature.

In particular, in this work, we compare the analytical solution of a problem governed by (1a) and (1b) with the numerical simulations performed with LBM based on an isothermal flow assumption. Thus, we use a different stress tensor definition than (2), i.e.

τxx=2νρux.subscript𝜏𝑥𝑥2𝜈𝜌𝑢𝑥\tau_{xx}=2\nu\rho\frac{\partial u}{\partial x}.italic_τ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT = 2 italic_ν italic_ρ divide start_ARG ∂ italic_u end_ARG start_ARG ∂ italic_x end_ARG . (3)

The alternative form of the stress tensor given in Eq.(3), compared to the complete expression in (2), arises from the fact that the bulk viscosity predicted by the Bhatnagar–Gross–Krook Bhatnagar et al. (1954)–based lattice Boltzmann model is incompatible with the assumption of isothermal flow. Unless stated otherwise, we continue with the stress tensor defined in (3). The implications of this consideration can be tested, and if necessary, future corrections can be made.

Besides, we use a Korteweg-type pressureKorteweg (1901)

p=pEOS+κ2(ρx)2κρ2ρx2,𝑝subscript𝑝EOS𝜅2superscript𝜌𝑥2𝜅𝜌superscript2𝜌superscript𝑥2p=p_{\mathrm{EOS}}+\frac{\kappa}{2}\left(\frac{\partial\rho}{\partial x}\right% )^{2}-\kappa\rho\frac{\partial^{2}\rho}{\partial x^{2}},italic_p = italic_p start_POSTSUBSCRIPT roman_EOS end_POSTSUBSCRIPT + divide start_ARG italic_κ end_ARG start_ARG 2 end_ARG ( divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_x end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_κ italic_ρ divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (4)

where pEOSsubscript𝑝EOSp_{\text{EOS}}italic_p start_POSTSUBSCRIPT EOS end_POSTSUBSCRIPT denotes the equation of state (EOS) and κ>0𝜅0\kappa>0italic_κ > 0 is the surface tension coefficient.

A fixed pressure pvsubscript𝑝vp_{\text{v}}italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT is imposed on the boundary. Since the temperature is fixed, this will imply a fixed vapor density at the boundary ρvsubscript𝜌v\rho_{\text{v}}italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT. Then, we define the following dimensionless quantities:

xsuperscript𝑥\displaystyle x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT xρvpvκ,ttpvρv3κ,uuρvpv,formulae-sequenceabsent𝑥subscript𝜌vsubscript𝑝v𝜅formulae-sequencesuperscript𝑡𝑡subscript𝑝vsuperscriptsubscript𝜌v3𝜅superscript𝑢𝑢subscript𝜌vsubscript𝑝v\displaystyle\coloneqq\frac{x}{\rho_{\text{v}}}\sqrt{\frac{p_{\text{v}}}{% \kappa}},~{}~{}~{}t^{\ast}\coloneqq t\frac{p_{\text{v}}}{\sqrt{\rho_{\text{v}}% ^{3}\kappa}},~{}~{}~{}u^{\ast}\coloneqq u\sqrt{\frac{\rho_{\text{v}}}{p_{\text% {v}}}},≔ divide start_ARG italic_x end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG square-root start_ARG divide start_ARG italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG start_ARG italic_κ end_ARG end_ARG , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≔ italic_t divide start_ARG italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_κ end_ARG end_ARG , italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≔ italic_u square-root start_ARG divide start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG start_ARG italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG end_ARG , (5)
νsuperscript𝜈\displaystyle\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT νρvκ,ρρρv,pppv.formulae-sequenceabsent𝜈subscript𝜌v𝜅formulae-sequencesuperscript𝜌𝜌subscript𝜌vsuperscript𝑝𝑝subscript𝑝v\displaystyle\coloneqq\frac{\nu}{\sqrt{\rho_{\text{v}}\kappa}},~{}~{}~{}~{}~{}% \rho^{\ast}\coloneqq\frac{\rho}{\rho_{\text{v}}},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{% }~{}p^{\ast}\coloneqq\frac{p}{p_{\text{v}}}.≔ divide start_ARG italic_ν end_ARG start_ARG square-root start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT italic_κ end_ARG end_ARG , italic_ρ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≔ divide start_ARG italic_ρ end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG , italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≔ divide start_ARG italic_p end_ARG start_ARG italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG .

IV Ansatz for a model solution

When performing initial simulations, we observed that the interface was moving with a constant speed (cf. Figure 2). Thus, in the ansatz used further below to derive an analytical solution, we make explicit use of the following assumptions:

  1. 1.

    After a transient time, the solution reaches a state where the interface propagates with constant velocity uintsubscript𝑢intu_{\text{int}}italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT.

  2. 2.

    The center of the drop will have a zero velocity by symmetry and will retain a constant density.

  3. 3.

    The previous assumptions suggest that we can pick a frame of reference (x,tsuperscript𝑥superscript𝑡x^{\prime},t^{\prime}italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT) for half of the system that moves with the interface, where any field ϕitalic-ϕ\phiitalic_ϕ is then independent of time, i.e. ϕ/t=0italic-ϕsuperscript𝑡0\partial\phi/\partial t^{\prime}=0∂ italic_ϕ / ∂ italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 0.

The transformation between the old and new frame of reference is:

x=xuintt,t=t,x=x+uintt,t=t.superscript𝑥absent𝑥subscript𝑢int𝑡superscript𝑡absent𝑡𝑥absentsuperscript𝑥subscript𝑢intsuperscript𝑡𝑡absentsuperscript𝑡\begin{aligned} x^{\prime}&=x-u_{\text{int}}t,\\ t^{\prime}&=t,\end{aligned}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\begin{aligned} x&=x^% {\prime}+u_{\text{int}}t^{\prime},\\ t&=t^{\prime}.\end{aligned}start_ROW start_CELL italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL = italic_x - italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT italic_t , end_CELL end_ROW start_ROW start_CELL italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL = italic_t , end_CELL end_ROW start_ROW start_CELL italic_x end_CELL start_CELL = italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL italic_t end_CELL start_CELL = italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT . end_CELL end_ROW (6)

From the definitions in (5) and the consideration of Assumption 3, it follows that:

ϕtitalic-ϕ𝑡\displaystyle\frac{\partial\phi}{\partial t}divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_t end_ARG =(ϕt)tt+(ϕx)xtϕt=uintϕx,formulae-sequenceabsentitalic-ϕsuperscript𝑡superscript𝑡𝑡italic-ϕsuperscript𝑥superscript𝑥𝑡italic-ϕ𝑡subscript𝑢intitalic-ϕsuperscript𝑥\displaystyle=\left(\frac{\partial\phi}{\partial t^{\prime}}\right)\frac{% \partial t^{\prime}}{\partial t}+\left(\frac{\partial\phi}{\partial x^{\prime}% }\right)\frac{\partial x^{\prime}}{\partial t}\quad\Rightarrow\quad\frac{% \partial\phi}{\partial t}=-u_{\text{int}}\frac{\partial\phi}{\partial x^{% \prime}},= ( divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) divide start_ARG ∂ italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_t end_ARG + ( divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) divide start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_t end_ARG ⇒ divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_t end_ARG = - italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG , (7)
ϕxitalic-ϕ𝑥\displaystyle\frac{\partial\phi}{\partial x}divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_x end_ARG =(ϕt)tx+(ϕx)xxϕx=ϕx.formulae-sequenceabsentitalic-ϕsuperscript𝑡superscript𝑡𝑥italic-ϕsuperscript𝑥superscript𝑥𝑥italic-ϕ𝑥italic-ϕsuperscript𝑥\displaystyle=\left(\frac{\partial\phi}{\partial t^{\prime}}\right)\frac{% \partial t^{\prime}}{\partial x}+\left(\frac{\partial\phi}{\partial x^{\prime}% }\right)\frac{\partial x^{\prime}}{\partial x}\quad\Rightarrow\quad\frac{% \partial\phi}{\partial x}=\frac{\partial\phi}{\partial x^{\prime}}.= ( divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) divide start_ARG ∂ italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_x end_ARG + ( divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) divide start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_x end_ARG ⇒ divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_x end_ARG = divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG .

IV.1 Mass conservation

Now, the mass conservation equation (1a) is rewritten in terms of xsuperscript𝑥x^{\prime}italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Since the solution is independent of tsuperscript𝑡t^{\prime}italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, we write ϕ/x=dϕ/dxitalic-ϕsuperscript𝑥𝑑italic-ϕ𝑑superscript𝑥\partial\phi/\partial x^{\prime}=d\phi/dx^{\prime}∂ italic_ϕ / ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_d italic_ϕ / italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT which gives

uintdρdx+d(ρu)dx=0(uintu)dρdx=ρdudx.formulae-sequencesubscript𝑢int𝑑𝜌𝑑superscript𝑥𝑑𝜌𝑢𝑑superscript𝑥0subscript𝑢int𝑢𝑑𝜌𝑑superscript𝑥𝜌𝑑𝑢𝑑superscript𝑥-u_{\text{int}}\frac{d\rho}{dx^{\prime}}+\frac{d(\rho u)}{dx^{\prime}}=0\quad% \Rightarrow\quad(u_{\text{int}}-u)\frac{d\rho}{dx^{\prime}}=\rho\frac{du}{dx^{% \prime}}.- italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_d ( italic_ρ italic_u ) end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = 0 ⇒ ( italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT - italic_u ) divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = italic_ρ divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG . (8)

We integrate (8) and obtain a relation between ρ𝜌\rhoitalic_ρ and u𝑢uitalic_u up to a constant C1subscript𝐶1C_{1}italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT:

dρρ=duuintu+C1ρ(uintu)=eC1=const.formulae-sequence𝑑𝜌𝜌𝑑𝑢subscript𝑢int𝑢subscript𝐶1𝜌subscript𝑢int𝑢superscriptesubscript𝐶1const\int\frac{d\rho}{\rho}=\int\frac{du}{u_{\text{int}}-u}+C_{1}\quad\Rightarrow% \quad\rho(u_{\text{int}}-u)=\mathrm{e}^{C_{1}}=\text{const}.∫ divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_ρ end_ARG = ∫ divide start_ARG italic_d italic_u end_ARG start_ARG italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT - italic_u end_ARG + italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⇒ italic_ρ ( italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT - italic_u ) = roman_e start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = const . (9)

According to Assumpion 2, in the liquid region ρ=ρl𝜌subscript𝜌l\rho=\rho_{\text{l}}italic_ρ = italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT and u=0𝑢0u=0italic_u = 0, respectively. Then, from (9) we obtain

ρ(uintu)=ρluint.𝜌subscript𝑢int𝑢subscript𝜌lsubscript𝑢int\rho(u_{\text{int}}-u)=\rho_{\text{l}}u_{\text{int}}.italic_ρ ( italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT - italic_u ) = italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT . (10)

Thus, our main finding from the mass conservation equation (1a) is (10) that leads to the useful relation:

dudx=(uintu)ρdρdxdudx=ρluintρ2dρdxformulae-sequence𝑑𝑢𝑑superscript𝑥subscript𝑢int𝑢𝜌𝑑𝜌𝑑superscript𝑥𝑑𝑢𝑑superscript𝑥subscript𝜌lsubscript𝑢intsuperscript𝜌2𝑑𝜌𝑑superscript𝑥\frac{du}{dx^{\prime}}=\frac{(u_{\text{int}}-u)}{\rho}\frac{d\rho}{dx^{\prime}% }\quad\Rightarrow\quad\frac{du}{dx^{\prime}}=\frac{\rho_{\text{l}}u_{\text{int% }}}{\rho^{2}}\frac{d\rho}{dx^{\prime}}divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = divide start_ARG ( italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT - italic_u ) end_ARG start_ARG italic_ρ end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ⇒ divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG (11)

We make explicit use of (11) below.

IV.2 Momentum conservation

Considering the momentum equation (1b), we start by replacing the derivatives in terms of t𝑡titalic_t and x𝑥xitalic_x with derivatives in terms of xsuperscript𝑥x^{\prime}italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, which gives

ρuintdudx+ρududx=dpdx+ddx(2νρdudx).𝜌subscript𝑢int𝑑𝑢𝑑superscript𝑥𝜌𝑢𝑑𝑢𝑑superscript𝑥𝑑𝑝𝑑superscript𝑥𝑑𝑑superscript𝑥2𝜈𝜌𝑑𝑢𝑑superscript𝑥-\rho u_{\text{int}}\frac{du}{dx^{\prime}}+\rho u\frac{du}{dx^{\prime}}=-\frac% {dp}{dx^{\prime}}+\frac{d}{dx^{\prime}}\left(2\nu\rho\frac{du}{dx^{\prime}}% \right).- italic_ρ italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG + italic_ρ italic_u divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = - divide start_ARG italic_d italic_p end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_d end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ( 2 italic_ν italic_ρ divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) . (12)

Next, we rewrite the left-hand side of (12) using (10) and (11) to obtain

ρ(uuint)dudx=ρl2uint2ρ2dρdx.𝜌𝑢subscript𝑢int𝑑𝑢𝑑superscript𝑥superscriptsubscript𝜌l2superscriptsubscript𝑢int2superscript𝜌2𝑑𝜌𝑑superscript𝑥\rho(u-u_{\text{int}})\frac{du}{dx^{\prime}}=-\frac{\rho_{\text{l}}^{2}u_{% \text{int}}^{2}}{\rho^{2}}\frac{d\rho}{dx^{\prime}}.italic_ρ ( italic_u - italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT ) divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = - divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG . (13)

Using (11), we also rewrite the viscous term as

2νρdudx=2ρluintνρdρdx.2𝜈𝜌𝑑𝑢𝑑superscript𝑥2subscript𝜌lsubscript𝑢int𝜈𝜌𝑑𝜌𝑑superscript𝑥2\nu\rho\frac{du}{dx^{\prime}}=2\rho_{\text{l}}u_{\text{int}}\frac{\nu}{\rho}% \frac{d\rho}{dx^{\prime}}.2 italic_ν italic_ρ divide start_ARG italic_d italic_u end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = 2 italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT divide start_ARG italic_ν end_ARG start_ARG italic_ρ end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG . (14)

Now, all terms of (12) that were dependent on u𝑢uitalic_u are replaced by terms that depend on ρ𝜌\rhoitalic_ρ. Hence, we have reached a closed-form equation that depends on one variable only. All terms of the modified momentum conservation equation based on (12), (13), and (14) can be grouped in the form

ddx(p+(ρluint)2ρ2ρluintνρdρdx)=0,𝑑𝑑superscript𝑥𝑝superscriptsubscript𝜌lsubscript𝑢int2𝜌2subscript𝜌lsubscript𝑢int𝜈𝜌𝑑𝜌𝑑superscript𝑥0\frac{d}{dx^{\prime}}\left(p+\frac{(\rho_{\text{l}}u_{\text{int}})^{2}}{\rho}-% 2\rho_{\text{l}}u_{\text{int}}\frac{\nu}{\rho}\frac{d\rho}{dx^{\prime}}\right)% =0,divide start_ARG italic_d end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ( italic_p + divide start_ARG ( italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ end_ARG - 2 italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT divide start_ARG italic_ν end_ARG start_ARG italic_ρ end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) = 0 , (15)

which gives

p+(ρluint)2ρ2ρluintνρdρdx=C2=const.𝑝superscriptsubscript𝜌lsubscript𝑢int2𝜌2subscript𝜌lsubscript𝑢int𝜈𝜌𝑑𝜌𝑑superscript𝑥subscript𝐶2constp+\frac{(\rho_{\text{l}}u_{\text{int}})^{2}}{\rho}-2\rho_{\text{l}}u_{\text{% int}}\frac{\nu}{\rho}\frac{d\rho}{dx^{\prime}}=C_{2}=\text{const}.italic_p + divide start_ARG ( italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ end_ARG - 2 italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT divide start_ARG italic_ν end_ARG start_ARG italic_ρ end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = const . (16)

Considering that density gradients are equal to zero in the bulk regions, we can evaluate the constant C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT in (16) and obtain

C2=pv+ρl2uint2ρv,andC2=pl+ρl2uint2ρl.formulae-sequencesubscript𝐶2subscript𝑝vsuperscriptsubscript𝜌l2superscriptsubscript𝑢int2subscript𝜌vandsubscript𝐶2subscript𝑝lsuperscriptsubscript𝜌l2superscriptsubscript𝑢int2subscript𝜌lC_{2}=p_{\text{v}}+\frac{\rho_{\text{l}}^{2}u_{\text{int}}^{2}}{\rho_{\text{v}% }},\quad\text{and}~{}~{}~{}C_{2}=p_{\text{l}}+\frac{\rho_{\text{l}}^{2}u_{% \text{int}}^{2}}{\rho_{\text{l}}}.italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT + divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG , and italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT l end_POSTSUBSCRIPT + divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_ARG . (17)

Next, we proceed by manipulating the differential equation in a more convenient form to solve.

IV.3 Final ordinary differential equation

From (4), (16) and (17) we have the following ordinary differential equation (ODE) in terms of xsuperscript𝑥x^{\prime}italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT:

κρd2ρdx2κ2(dρdx)2+2ρluintνρdρdx=f(ρ),𝜅𝜌superscript𝑑2𝜌𝑑superscript𝑥2𝜅2superscript𝑑𝜌𝑑superscript𝑥22subscript𝜌lsubscript𝑢int𝜈𝜌𝑑𝜌𝑑superscript𝑥𝑓𝜌\kappa\rho\frac{d^{2}\rho}{dx^{\prime 2}}-\frac{\kappa}{2}\left(\frac{d\rho}{% dx^{\prime}}\right)^{2}+2\rho_{\text{l}}u_{\text{int}}\frac{\nu}{\rho}\frac{d% \rho}{dx^{\prime}}=f(\rho),italic_κ italic_ρ divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_κ end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT divide start_ARG italic_ν end_ARG start_ARG italic_ρ end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG = italic_f ( italic_ρ ) , (18a)
where
f(ρ)=pEOSpvuint2ρl2(1ρv1ρ).𝑓𝜌subscript𝑝EOSsubscript𝑝vsuperscriptsubscript𝑢int2superscriptsubscript𝜌l21subscript𝜌v1𝜌f(\rho)=p_{\text{EOS}}-p_{\text{v}}-u_{\text{int}}^{2}\rho_{\text{l}}^{2}\left% (\frac{1}{\rho_{\text{v}}}-\frac{1}{\rho}\right).italic_f ( italic_ρ ) = italic_p start_POSTSUBSCRIPT EOS end_POSTSUBSCRIPT - italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG ) . (18b)

The ODE (18a) can be converted into a more convenient form by applying a simplification based on the assumption that the density function ρ=ρ(x)𝜌𝜌superscript𝑥\rho=\rho(x^{\prime})italic_ρ = italic_ρ ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is monotonically growing, i.e. dρ/dx>0𝑑𝜌𝑑superscript𝑥0d\rho/dx^{\prime}>0italic_d italic_ρ / italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT > 0 for all xsuperscript𝑥x^{\prime}italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Then, the dependency on xsuperscript𝑥x^{\prime}italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT can be transformed into a dependency on ρ𝜌\rhoitalic_ρ.

Considering dρ/dx𝑑𝜌𝑑superscript𝑥d\rho/dx^{\prime}italic_d italic_ρ / italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT as a function of ρ𝜌\rhoitalic_ρ, we have that

dρdx𝑑𝜌𝑑superscript𝑥\displaystyle\frac{d\rho}{dx^{\prime}}divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG =z(ρ),absent𝑧𝜌\displaystyle=z(\rho),= italic_z ( italic_ρ ) , (19)
d2ρdx2superscript𝑑2𝜌𝑑superscript𝑥2\displaystyle\frac{d^{2}\rho}{dx^{\prime 2}}divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT end_ARG =dzdxd2ρdx2=dzdρdρdxd2ρdx2=12dz2dρ.formulae-sequenceabsent𝑑𝑧𝑑superscript𝑥formulae-sequencesuperscript𝑑2𝜌𝑑superscript𝑥2𝑑𝑧𝑑𝜌𝑑𝜌𝑑superscript𝑥superscript𝑑2𝜌𝑑superscript𝑥212𝑑superscript𝑧2𝑑𝜌\displaystyle=\frac{dz}{dx^{\prime}}\quad\Rightarrow\quad\frac{d^{2}\rho}{dx^{% \prime 2}}=\frac{dz}{d\rho}\frac{d\rho}{dx^{\prime}}\quad\Rightarrow\quad\frac% {d^{2}\rho}{dx^{\prime 2}}=\frac{1}{2}\frac{dz^{2}}{d\rho}.= divide start_ARG italic_d italic_z end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ⇒ divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_d italic_z end_ARG start_ARG italic_d italic_ρ end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ⇒ divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_ρ end_ARG .

Also, the first two terms of the left-hand side of (18a) can be grouped such that

κρd2ρdxκ2(dρdx)2=κρ2dz2dρκ2z2𝜅𝜌superscript𝑑2𝜌𝑑superscript𝑥𝜅2superscript𝑑𝜌𝑑superscript𝑥2𝜅𝜌2𝑑superscript𝑧2𝑑𝜌𝜅2superscript𝑧2\displaystyle\kappa\rho\frac{d^{2}\rho}{dx^{\prime}}-\frac{\kappa}{2}\left(% \frac{d\rho}{dx^{\prime}}\right)^{2}=\frac{\kappa\rho}{2}\frac{dz^{2}}{d\rho}-% \frac{\kappa}{2}z^{2}italic_κ italic_ρ divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_κ end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_κ italic_ρ end_ARG start_ARG 2 end_ARG divide start_ARG italic_d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_ρ end_ARG - divide start_ARG italic_κ end_ARG start_ARG 2 end_ARG italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (20)
κρd2ρdxκ2(dρdx)2=ρ22ddρz2ρ.𝜅𝜌superscript𝑑2𝜌𝑑superscript𝑥𝜅2superscript𝑑𝜌𝑑superscript𝑥2superscript𝜌22𝑑𝑑𝜌superscript𝑧2𝜌\displaystyle\quad\Rightarrow\quad\kappa\rho\frac{d^{2}\rho}{dx^{\prime}}-% \frac{\kappa}{2}\left(\frac{d\rho}{dx^{\prime}}\right)^{2}=\frac{\rho^{2}}{2}% \frac{d}{d\rho}\frac{z^{2}}{\rho}.⇒ italic_κ italic_ρ divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_κ end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG divide start_ARG italic_d end_ARG start_ARG italic_d italic_ρ end_ARG divide start_ARG italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ end_ARG .

By applying the transformations of (20) to (18a), we obtain a non-linear ODE:

ddρz2ρ+4ρluintκνρ3z=2κf(ρ)ρ2.𝑑𝑑𝜌superscript𝑧2𝜌4subscript𝜌lsubscript𝑢int𝜅𝜈superscript𝜌3𝑧2𝜅𝑓𝜌superscript𝜌2\frac{d}{d\rho}\frac{z^{2}}{\rho}+4\frac{\rho_{\text{l}}u_{\text{int}}}{\kappa% }\frac{\nu}{\rho^{3}}z=\frac{2}{\kappa}\frac{f(\rho)}{\rho^{2}}.divide start_ARG italic_d end_ARG start_ARG italic_d italic_ρ end_ARG divide start_ARG italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ end_ARG + 4 divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_ν end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_z = divide start_ARG 2 end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_f ( italic_ρ ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (21)

The ODE (21) is an Abel’s equation of the second kind. This equation has the general formBougoffa (2010):

[g0(ρ)+g1(ρ)z]dzdρ=f2(ρ)z2+f1(ρ)z+f0(ρ).delimited-[]subscript𝑔0𝜌subscript𝑔1𝜌𝑧𝑑𝑧𝑑𝜌subscript𝑓2𝜌superscript𝑧2subscript𝑓1𝜌𝑧subscript𝑓0𝜌[g_{0}(\rho)+g_{1}(\rho)z]\frac{dz}{d\rho}=f_{2}(\rho)z^{2}+f_{1}(\rho)z+f_{0}% (\rho).[ italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ρ ) + italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ρ ) italic_z ] divide start_ARG italic_d italic_z end_ARG start_ARG italic_d italic_ρ end_ARG = italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ρ ) italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ρ ) italic_z + italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ρ ) . (22)

Equation (21) is a particular case of (22) with coefficients:

g0(ρ)=0,subscript𝑔0𝜌0\displaystyle g_{0}(\rho)=0,{}italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ρ ) = 0 , g1(ρ)=2ρsubscript𝑔1𝜌2𝜌\displaystyle~{}g_{1}(\rho)=\frac{2}{\rho}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ρ ) = divide start_ARG 2 end_ARG start_ARG italic_ρ end_ARG (23)
f0(ρ)=2κf(ρ)ρ2,f1(ρ)=\displaystyle f_{0}(\rho)=\frac{2}{\kappa}\frac{f(\rho)}{\rho^{2}},~{}~{}f_{1}% (\rho)=italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ρ ) = divide start_ARG 2 end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_f ( italic_ρ ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ρ ) = 4ρluintκνρ3,f2(ρ)=1ρ2.4subscript𝜌lsubscript𝑢int𝜅𝜈superscript𝜌3subscript𝑓2𝜌1superscript𝜌2\displaystyle-4\frac{\rho_{\text{l}}u_{\text{int}}}{\kappa}\frac{\nu}{\rho^{3}% },~{}~{}f_{2}(\rho)=\frac{1}{\rho^{2}}.- 4 divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_ν end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ρ ) = divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG .

Looking for a general solution to (21) may not be worth the effort, as the procedure could be too complex for practical applications. Therefore, we will proceed with an approximate solution.

IV.4 Exact solution of inviscid case

The simplest case occurs when there is no viscosity, ν=0𝜈0\nu=0italic_ν = 0. Thus, (21) can be simplified

ddρz2ρ=2κf(ρ)ρ2.𝑑𝑑𝜌superscript𝑧2𝜌2𝜅𝑓𝜌superscript𝜌2\frac{d}{d\rho}\frac{z^{2}}{\rho}=\frac{2}{\kappa}\frac{f(\rho)}{\rho^{2}}.divide start_ARG italic_d end_ARG start_ARG italic_d italic_ρ end_ARG divide start_ARG italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ end_ARG = divide start_ARG 2 end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_f ( italic_ρ ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (24)

Next, we integrate the whole expression

z2(ρ)ρzv2ρv=ρvρ2κf(ρ)ρ2𝑑ρ,superscript𝑧2𝜌𝜌superscriptsubscript𝑧v2subscript𝜌vsuperscriptsubscriptsubscript𝜌v𝜌2𝜅𝑓𝜌superscript𝜌2differential-d𝜌\frac{z^{2}(\rho)}{\rho}-\frac{z_{\text{v}}^{2}}{\rho_{\text{v}}}=\int_{\rho_{% \text{v}}}^{\rho}\frac{2}{\kappa}\frac{f(\rho)}{\rho^{2}}d\rho,divide start_ARG italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ρ ) end_ARG start_ARG italic_ρ end_ARG - divide start_ARG italic_z start_POSTSUBSCRIPT v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG = ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_f ( italic_ρ ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_ρ , (25)

where zv=z(ρv)subscript𝑧v𝑧subscript𝜌vz_{\text{v}}=z(\rho_{\text{v}})italic_z start_POSTSUBSCRIPT v end_POSTSUBSCRIPT = italic_z ( italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT ). The boundary condition zv=0subscript𝑧v0z_{\text{v}}=0italic_z start_POSTSUBSCRIPT v end_POSTSUBSCRIPT = 0 (no density gradients in the bulk phases) is applied to obtain a solution for z(ρ)𝑧𝜌z(\rho)italic_z ( italic_ρ ):

z(0)(ρ)=ρρvρ2κf(ρ)ρ2𝑑ρ.superscript𝑧0𝜌𝜌superscriptsubscriptsubscript𝜌v𝜌2𝜅𝑓𝜌superscript𝜌2differential-d𝜌z^{(0)}(\rho)=\sqrt{\rho\int_{\rho_{\text{v}}}^{\rho}\frac{2}{\kappa}\frac{f(% \rho)}{\rho^{2}}d\rho}.italic_z start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT ( italic_ρ ) = square-root start_ARG italic_ρ ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_f ( italic_ρ ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_ρ end_ARG . (26)

The symbol z(0)superscript𝑧0z^{(0)}italic_z start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT represents the solution of z𝑧zitalic_z for the inviscid case. The selection of the positive sign in the solution (26) means that the interface density grows with respect to the x𝑥xitalic_x direction. In Figure 1 this represents the interface in the left-hand side.

Then, we replace f(ρ)𝑓𝜌f(\rho)italic_f ( italic_ρ ) in (26) by (18b), and apply the boundary conditions zL=z(ρL)=0subscript𝑧𝐿𝑧subscript𝜌𝐿0z_{L}=z(\rho_{L})=0italic_z start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = italic_z ( italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) = 0 (no density gradients in the bulk phases). After this step, we obtain the following expression:

0=ρvρlpEOSpvρ2𝑑ρρvρluint2ρl2ρ2(1ρv1ρ)𝑑ρ.0superscriptsubscriptsubscript𝜌vsubscript𝜌lsubscript𝑝EOSsubscript𝑝vsuperscript𝜌2differential-d𝜌superscriptsubscriptsubscript𝜌vsubscript𝜌lsuperscriptsubscript𝑢int2superscriptsubscript𝜌l2superscript𝜌21subscript𝜌v1𝜌differential-d𝜌0=\int_{\rho_{\text{v}}}^{\rho_{\text{l}}}\frac{p_{\text{EOS}}-p_{\text{v}}}{% \rho^{2}}d\rho-\int_{\rho_{\text{v}}}^{\rho_{\text{l}}}\frac{u_{\text{int}}^{2% }\rho_{\text{l}}^{2}}{\rho^{2}}\left(\frac{1}{\rho_{\text{v}}}-\frac{1}{\rho}% \right)d\rho.0 = ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_p start_POSTSUBSCRIPT EOS end_POSTSUBSCRIPT - italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_ρ - ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG ) italic_d italic_ρ . (27)

Finally, we perform the integral in the second term of the right-hand side of (27) and isolate uintsubscript𝑢intu_{\text{int}}italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT:

uint(0)=ρvρlpEOSpvρ2𝑑ρρlρv(12ρlρv1)+12,superscriptsubscript𝑢int0superscriptsubscriptsubscript𝜌vsubscript𝜌lsubscript𝑝EOSsubscript𝑝vsuperscript𝜌2differential-d𝜌subscript𝜌lsubscript𝜌v12subscript𝜌lsubscript𝜌v112u_{\text{int}}^{(0)}=\frac{\sqrt{\int_{\rho_{\text{v}}}^{\rho_{\text{l}}}\frac% {p_{\text{EOS}}-p_{\text{v}}}{\rho^{2}}d\rho}}{\sqrt{\frac{\rho_{\text{l}}}{% \rho_{\text{v}}}\left(\frac{1}{2}\frac{\rho_{\text{l}}}{\rho_{\text{v}}}-1% \right)+\frac{1}{2}}},italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT = divide start_ARG square-root start_ARG ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_p start_POSTSUBSCRIPT EOS end_POSTSUBSCRIPT - italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_ρ end_ARG end_ARG start_ARG square-root start_ARG divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG - 1 ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_ARG end_ARG , (28)

where uint(0)superscriptsubscript𝑢int0u_{\text{int}}^{(0)}italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT represents the interface velocity for the inviscid case. The positive velocity is compatible with the orientation of the interface (26) (see Figure 1). The inviscid interface velocity is completely independent on κ𝜅\kappaitalic_κ. An important consideration regarding Eq.(28) is the dependence of the liquid density ρlsubscript𝜌l\rho_{\text{l}}italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT on the interface velocity. As a result, determining the correct liquid velocity requires solving a coupled system comprising Eq.(28) and the following two additional equations:

pl=pv+ρluint2(1ρv1ρl);pl=pEOS(ρl,T).formulae-sequencesubscript𝑝lsubscript𝑝vsubscript𝜌lsuperscriptsubscript𝑢int21subscript𝜌v1subscript𝜌lsubscript𝑝𝑙subscript𝑝𝐸𝑂𝑆subscript𝜌l𝑇p_{\text{l}}=p_{\text{v}}+\rho_{\text{l}}u_{\text{int}}^{2}\left(\frac{1}{\rho% _{\text{v}}}-\frac{1}{\rho_{\text{l}}}\right);\quad p_{l}=p_{EOS}(\rho_{\text{% l}},T).italic_p start_POSTSUBSCRIPT l end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_ARG ) ; italic_p start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT italic_E italic_O italic_S end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT , italic_T ) . (29)

Next, we consider the case with viscous effects.

IV.5 Approximate solution of viscid case

The equivalent of (25) for the viscid case is:

z2(ρ)ρzv2ρv=ρvρ[2κf(ρ)ρ24ρluintκνρ3z(ρ)]𝑑ρ.superscript𝑧2𝜌𝜌superscriptsubscript𝑧v2subscript𝜌vsuperscriptsubscriptsubscript𝜌v𝜌delimited-[]2𝜅𝑓𝜌superscript𝜌24subscript𝜌lsubscript𝑢int𝜅𝜈superscript𝜌3𝑧𝜌differential-d𝜌\frac{z^{2}(\rho)}{\rho}-\frac{z_{\text{v}}^{2}}{\rho_{\text{v}}}=\int_{\rho_{% \text{v}}}^{\rho}\left[\frac{2}{\kappa}\frac{f(\rho)}{\rho^{2}}-4\frac{\rho_{% \text{l}}u_{\text{int}}}{\kappa}\frac{\nu}{\rho^{3}}z(\rho)\right]d\rho.divide start_ARG italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ρ ) end_ARG start_ARG italic_ρ end_ARG - divide start_ARG italic_z start_POSTSUBSCRIPT v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG = ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT [ divide start_ARG 2 end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_f ( italic_ρ ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 4 divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_ν end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_z ( italic_ρ ) ] italic_d italic_ρ . (30)

The problem with (30) is that we cannot use it to explicitly solve for z𝑧zitalic_z. To overcome this challenge and obtain an approximate solution, we consider that the viscosity ν𝜈\nuitalic_ν has a small influence on the interface profile, which depends on z𝑧zitalic_z. At least, this approximation will be valid for sufficiently small ν𝜈\nuitalic_ν. Thus, we assume that z𝑧zitalic_z in the viscous case can be approximated by z(0)superscript𝑧0z^{(0)}italic_z start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT from the inviscid case. We use this approximation to compute the integral of the second term on the right-hand side of (30).

Applying the boundary condition zl=0subscript𝑧l0z_{\text{l}}=0italic_z start_POSTSUBSCRIPT l end_POSTSUBSCRIPT = 0 and the previous assumption to (30) yields

0=ρvρl[2κf(ρ)ρ24ρluintκνρ3z(0)(ρ)]𝑑ρ.0superscriptsubscriptsubscript𝜌vsubscript𝜌ldelimited-[]2𝜅𝑓𝜌superscript𝜌24subscript𝜌lsubscript𝑢int𝜅𝜈superscript𝜌3superscript𝑧0𝜌differential-d𝜌0=\int_{\rho_{\text{v}}}^{\rho_{\text{l}}}\left[\frac{2}{\kappa}\frac{f(\rho)}% {\rho^{2}}-4\frac{\rho_{\text{l}}u_{\text{int}}}{\kappa}\frac{\nu}{\rho^{3}}z^% {(0)}(\rho)\right]d\rho.0 = ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT [ divide start_ARG 2 end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_f ( italic_ρ ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 4 divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT end_ARG start_ARG italic_κ end_ARG divide start_ARG italic_ν end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_z start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT ( italic_ρ ) ] italic_d italic_ρ . (31)

Replacing f(ρ)𝑓𝜌f(\rho)italic_f ( italic_ρ ) in (26) by (18b) leads to a final equation that describes the interface velocity:

Auint2+Buint+C=0,𝐴superscriptsubscript𝑢int2𝐵subscript𝑢int𝐶0Au_{\text{int}}^{2}+Bu_{\text{int}}+C=0,italic_A italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_B italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT + italic_C = 0 , (32a)
A=ρlρv(112ρlρv)12,𝐴subscript𝜌lsubscript𝜌v112subscript𝜌lsubscript𝜌v12\displaystyle A=\frac{\rho_{\text{l}}}{\rho_{\text{v}}}\left(1-\frac{1}{2}% \frac{\rho_{\text{l}}}{\rho_{\text{v}}}\right)-\frac{1}{2},italic_A = divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG ( 1 - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG , (32b)
B=2ρlρvρlνρ3z(0)𝑑ρ,𝐵2subscript𝜌lsuperscriptsubscriptsubscript𝜌vsubscript𝜌l𝜈superscript𝜌3superscript𝑧0differential-d𝜌B=-2\rho_{\text{l}}\int_{\rho_{\text{v}}}^{\rho_{\text{l}}}\frac{\nu}{\rho^{3}% }z^{(0)}d\rho,italic_B = - 2 italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_ν end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_z start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT italic_d italic_ρ , (32c)
C=ρvρlpEOSpvρ2𝑑ρ.𝐶superscriptsubscriptsubscript𝜌vsubscript𝜌lsubscript𝑝EOSsubscript𝑝vsuperscript𝜌2differential-d𝜌C=\int_{\rho_{\text{v}}}^{\rho_{\text{l}}}\frac{p_{\text{EOS}}-p_{\text{v}}}{% \rho^{2}}d\rho.italic_C = ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_p start_POSTSUBSCRIPT EOS end_POSTSUBSCRIPT - italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_ρ . (32d)

Notably, the solution approach above is valid even if ν𝜈\nuitalic_ν depends on ρ𝜌\rhoitalic_ρ. The interface velocity is obtained by simply solving the quadratic equation, (32a) toward

uint=BB24AC2A,subscript𝑢int𝐵superscript𝐵24𝐴𝐶2𝐴u_{\text{int}}=\frac{-B-\sqrt{B^{2}-4AC}}{2A},italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT = divide start_ARG - italic_B - square-root start_ARG italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_A italic_C end_ARG end_ARG start_ARG 2 italic_A end_ARG , (33)

the choice of sign in (33) is motivated by the following reasons:

  • A is always negative (A<0𝐴0A<0italic_A < 0) if ρv<ρlsubscript𝜌vsubscript𝜌l\rho_{\text{v}}<\rho_{\text{l}}italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT < italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT,

  • B is always negative (B<0𝐵0B<0italic_B < 0) if ρv<ρlsubscript𝜌vsubscript𝜌l\rho_{\text{v}}<\rho_{\text{l}}italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT < italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT,

  • C is always positive (C>0𝐶0C>0italic_C > 0) for pv<psat(T)subscript𝑝vsubscript𝑝sat𝑇p_{\text{v}}<p_{\text{sat}}(T)italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT < italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT ( italic_T ).

Consequently, we conclude that a positive solution for uisubscript𝑢𝑖u_{i}italic_u start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is only possible for (33). The positive solution was selected due to the interface orientation choice in (26). The interface velocity must be solved together with the liquid density by coupling (33) with (29). The validity of the solution (33) is examined in Section VI.

V Lattice Boltzmann method and OpenLB implementation

In this work, we compare the analytical results given by (28) and (32a) with LBM simulations performed using OpenLB Krause et al. (2020). This is a powerful open-source LBM library applied in various fluid dynamics applications, including sub-grid particulate flows Bukreev et al. (2023b), fully resolved particle flows Hafen et al. (2023); Marquardt et al. (2024), turbulence simulations Siodlaczek et al. (2021); Simonis et al. (2022), optimization Reinke et al. (2022); Jeßberger et al. (2022), sub-grid multiphase flows Bukreev et al. (2023a), and fully resolved multiphase flows Simonis et al. (2024). The codes used in this work are implemented in OpenLB release 1.8 Kummerländer et al. (2025) and are available at https://www.openlb.net/download/.

The basic equation is named the lattice Boltzmann equation Krüger et al. (2017):

fi(t+Δt,𝒙+𝒄iΔt)fi(t,𝒙)=Δtτ(fieqfi)+ΔtFi,subscript𝑓𝑖𝑡Δ𝑡𝒙subscript𝒄𝑖Δ𝑡subscript𝑓𝑖𝑡𝒙Δ𝑡𝜏subscriptsuperscript𝑓eq𝑖subscript𝑓𝑖Δ𝑡subscript𝐹𝑖f_{i}(t+\Delta t,\bm{x}+\bm{c}_{i}\Delta t)-f_{i}(t,\bm{x})=\frac{\Delta t}{% \tau}(f^{\mathrm{eq}}_{i}-f_{i})+\Delta tF_{i},italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t + roman_Δ italic_t , bold_italic_x + bold_italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_t ) - italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t , bold_italic_x ) = divide start_ARG roman_Δ italic_t end_ARG start_ARG italic_τ end_ARG ( italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + roman_Δ italic_t italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , (34)

where fisubscript𝑓𝑖f_{i}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and fieqsuperscriptsubscript𝑓𝑖eqf_{i}^{\mathrm{eq}}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT are the distribution function and its equilibrium counterpart. The indexes i𝑖iitalic_i indicate the lattice velocity 𝒄isubscript𝒄𝑖\bm{c}_{i}bold_italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in which fisubscript𝑓𝑖f_{i}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is evaluated. The relaxation time τ𝜏\tauitalic_τ is related to the fluid kinematic viscosity ν=cs2(τ0.5Δt)𝜈superscriptsubscript𝑐𝑠2𝜏0.5Δ𝑡\nu=c_{s}^{2}(\tau-0.5\Delta t)italic_ν = italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_τ - 0.5 roman_Δ italic_t ). The parameter cs2=(1/3)(Δx/Δt)2superscriptsubscript𝑐𝑠213superscriptΔ𝑥Δ𝑡2c_{s}^{2}=(1/3)(\Delta x/\Delta t)^{2}italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( 1 / 3 ) ( roman_Δ italic_x / roman_Δ italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is called lattice sound speed Krüger et al. (2017). The equilibrium distribution function is a function of the fluid density ρ𝜌\rhoitalic_ρ and equilibrium velocity uαeqsuperscriptsubscript𝑢𝛼equ_{\alpha}^{\mathrm{eq}}italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPTLi et al. (2012):

fieq=wiρ(1+ciαcs2uαeq+ciαciβcs2δαβ2cs4ρuαequβeq),superscriptsubscript𝑓𝑖eqsubscript𝑤𝑖𝜌1subscript𝑐𝑖𝛼superscriptsubscript𝑐𝑠2superscriptsubscript𝑢𝛼eqsubscript𝑐𝑖𝛼subscript𝑐𝑖𝛽superscriptsubscript𝑐𝑠2subscript𝛿𝛼𝛽2superscriptsubscript𝑐𝑠4𝜌superscriptsubscript𝑢𝛼eqsuperscriptsubscript𝑢𝛽eqf_{i}^{\mathrm{eq}}=w_{i}\rho\left(1+\frac{c_{i\alpha}}{c_{s}^{2}}u_{\alpha}^{% \mathrm{eq}}+\frac{c_{i\alpha}c_{i\beta}-c_{s}^{2}\delta_{\alpha\beta}}{2c_{s}% ^{4}}\rho u_{\alpha}^{\mathrm{eq}}u_{\beta}^{\mathrm{eq}}\right),italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT = italic_w start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ρ ( 1 + divide start_ARG italic_c start_POSTSUBSCRIPT italic_i italic_α end_POSTSUBSCRIPT end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT + divide start_ARG italic_c start_POSTSUBSCRIPT italic_i italic_α end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_i italic_β end_POSTSUBSCRIPT - italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG italic_ρ italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT ) , (35)

where wisubscript𝑤𝑖w_{i}italic_w start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are the lattice weights for each lattice direction i𝑖iitalic_i. The equilibrium velocity is a quantity used to define fieqsuperscriptsubscript𝑓𝑖eqf_{i}^{\mathrm{eq}}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT and its relation with the real fluid velocity is introduced later.

The term Fisubscript𝐹𝑖F_{i}italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is called forcing scheme and is responsible for the addition of an external force Fαsubscript𝐹𝛼F_{\alpha}italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT to the LBM. Wagner Wagner (2006) proposed the following forcing scheme for the free-energy LBM:

Fi=wi(ciαcs2Fα+ciαciβcs2δαβ2cs4(Fαuβeq+Fβuαeq+ψδαβ)),subscript𝐹𝑖subscript𝑤𝑖subscript𝑐𝑖𝛼superscriptsubscript𝑐𝑠2subscript𝐹𝛼subscript𝑐𝑖𝛼subscript𝑐𝑖𝛽superscriptsubscript𝑐𝑠2subscript𝛿𝛼𝛽2superscriptsubscript𝑐𝑠4subscript𝐹𝛼superscriptsubscript𝑢𝛽eqsubscript𝐹𝛽superscriptsubscript𝑢𝛼eq𝜓subscript𝛿𝛼𝛽F_{i}=w_{i}\left(\frac{c_{i\alpha}}{c_{s}^{2}}F_{\alpha}+\frac{c_{i\alpha}c_{i% \beta}-c_{s}^{2}\delta_{\alpha\beta}}{2c_{s}^{4}}(F_{\alpha}u_{\beta}^{\mathrm% {eq}}+F_{\beta}u_{\alpha}^{\mathrm{eq}}+\psi\delta_{\alpha\beta})\right),italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( divide start_ARG italic_c start_POSTSUBSCRIPT italic_i italic_α end_POSTSUBSCRIPT end_ARG start_ARG italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT + divide start_ARG italic_c start_POSTSUBSCRIPT italic_i italic_α end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_i italic_β end_POSTSUBSCRIPT - italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ( italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT + italic_F start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT + italic_ψ italic_δ start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT ) ) , (36)

with

τψ=(τ14)FαFαρ+1122ρ.𝜏𝜓𝜏14subscript𝐹𝛼subscript𝐹𝛼𝜌112superscript2𝜌\tau\psi=\left(\tau-\frac{1}{4}\right)\frac{F_{\alpha}F_{\alpha}}{\rho}+\frac{% 1}{12}\nabla^{2}\rho.italic_τ italic_ψ = ( italic_τ - divide start_ARG 1 end_ARG start_ARG 4 end_ARG ) divide start_ARG italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ end_ARG + divide start_ARG 1 end_ARG start_ARG 12 end_ARG ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ . (37)

The Wagner forcing was validated only for 1D cases. Meaning that an extension for 2D cases was not provided yet. The thermodynamic force is related to the gradient of the chemical potential:

Fα=ραμ.subscript𝐹𝛼𝜌subscript𝛼𝜇F_{\alpha}=-\rho\partial_{\alpha}\mu.italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = - italic_ρ ∂ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_μ . (38)

The spatial derivatives are computed using second order central finite difference stencils.

The velocity set is the standard two-dimensional nine velocities scheme (D2Q9):

𝒄i={(0,0),i=0,(c,0),(0,c),(c,0),(0,c),i=1,,4,(c,c),(c,c),(c,c),(c,c),i=5,,8.subscript𝒄𝑖cases00𝑖0otherwiseformulae-sequence𝑐00𝑐𝑐00𝑐𝑖14otherwiseformulae-sequence𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖58otherwise\bm{c}_{i}=\begin{cases}(0,0),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}% ~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}% i=0,\\ (c,0),(0,c),(-c,0),(0,-c),~{}~{}~{}~{}~{}~{}i=1,...,4,\\ (c,c),(-c,c),(-c,-c),(c,-c),~{}i=5,...,8.\\ \end{cases}bold_italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = { start_ROW start_CELL ( 0 , 0 ) , italic_i = 0 , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ( italic_c , 0 ) , ( 0 , italic_c ) , ( - italic_c , 0 ) , ( 0 , - italic_c ) , italic_i = 1 , … , 4 , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ( italic_c , italic_c ) , ( - italic_c , italic_c ) , ( - italic_c , - italic_c ) , ( italic_c , - italic_c ) , italic_i = 5 , … , 8 . end_CELL start_CELL end_CELL end_ROW (39)

The macroscopic variables are computed from the moments of the distribution function:

ρ=ifi,𝜌subscript𝑖subscript𝑓𝑖\rho=\sum_{i}f_{i},italic_ρ = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , (40a)
ρuαeq=ificiα.𝜌superscriptsubscript𝑢𝛼eqsubscript𝑖subscript𝑓𝑖subscript𝑐𝑖𝛼\rho u_{\alpha}^{\mathrm{eq}}=\sum_{i}f_{i}c_{i\alpha}.italic_ρ italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_i italic_α end_POSTSUBSCRIPT . (40b)

The real fluid velocity uαsubscript𝑢𝛼u_{\alpha}italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT depends on uαeqsuperscriptsubscript𝑢𝛼equ_{\alpha}^{\mathrm{eq}}italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT and the force Fαsubscript𝐹𝛼F_{\alpha}italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT:

uα=uαeq+Δt2Fαρ.subscript𝑢𝛼superscriptsubscript𝑢𝛼eqΔ𝑡2subscript𝐹𝛼𝜌u_{\alpha}=u_{\alpha}^{\mathrm{eq}}+\frac{\Delta t}{2}\frac{F_{\alpha}}{\rho}.italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT + divide start_ARG roman_Δ italic_t end_ARG start_ARG 2 end_ARG divide start_ARG italic_F start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ end_ARG . (41)

In this work, we use an equation of state based on the Landau free energy functional Briant et al. (2004):

pEOS=pc(νρ+1)2(3νρ22νρ+12τw),subscript𝑝EOSsubscript𝑝𝑐superscriptsubscript𝜈𝜌123superscriptsubscript𝜈𝜌22subscript𝜈𝜌12subscript𝜏𝑤p_{\mathrm{EOS}}=p_{c}(\nu_{\rho}+1)^{2}(3\nu_{\rho}^{2}-2\nu_{\rho}+1-2\tau_{% w}),italic_p start_POSTSUBSCRIPT roman_EOS end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_ν start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 3 italic_ν start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_ν start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT + 1 - 2 italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ) , (42a)
νρ=ρρcρc,τw=TcTTc,formulae-sequencesubscript𝜈𝜌𝜌subscript𝜌𝑐subscript𝜌𝑐subscript𝜏𝑤subscript𝑇𝑐𝑇subscript𝑇𝑐\nu_{\rho}=\frac{\rho-\rho_{c}}{\rho_{c}},~{}~{}~{}\tau_{w}=\frac{T_{c}-T}{T_{% c}},italic_ν start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT = divide start_ARG italic_ρ - italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG , italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT = divide start_ARG italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT - italic_T end_ARG start_ARG italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG , (42b)

where ρcsubscript𝜌𝑐\rho_{c}italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, pcsubscript𝑝𝑐p_{c}italic_p start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT are the critical density, pressure, and temperature. The chemical potential is described by:

μ=4pcρcνρ(νρ2τw)κ2ρ.𝜇4subscript𝑝𝑐subscript𝜌𝑐subscript𝜈𝜌superscriptsubscript𝜈𝜌2subscript𝜏𝑤𝜅superscript2𝜌\mu=\frac{4p_{c}}{\rho_{c}}\nu_{\rho}(\nu_{\rho}^{2}-\tau_{w})-\kappa\nabla^{2% }\rho.italic_μ = divide start_ARG 4 italic_p start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG italic_ν start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ( italic_ν start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ) - italic_κ ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ . (43)

For a planar interface in equilibrium, the bulk densities (ρvsatsuperscriptsubscript𝜌vsat\rho_{\text{v}}^{\text{sat}}italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT and ρlsatsuperscriptsubscript𝜌lsat\rho_{\text{l}}^{\text{sat}}italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT), interface thickness ξ𝜉\xiitalic_ξ, and surface tension γ𝛾\gammaitalic_γ are given by:

ρvsatsuperscriptsubscript𝜌vsat\displaystyle\rho_{\text{v}}^{\text{sat}}italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT =ρc(1τw);ρlsat=ρc(1+τw);formulae-sequenceabsentsubscript𝜌𝑐1subscript𝜏𝑤superscriptsubscript𝜌lsatsubscript𝜌𝑐1subscript𝜏𝑤\displaystyle=\rho_{c}(1-\tau_{w});~{}~{}\rho_{\text{l}}^{\text{sat}}=\rho_{c}% (1+\tau_{w});= italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 - italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ) ; italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT = italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 + italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ) ; (44)
ξ𝜉\displaystyle\xiitalic_ξ =κρc24τwpc;γ=432κpc(τw)3/2ρc.formulae-sequenceabsent𝜅superscriptsubscript𝜌𝑐24subscript𝜏𝑤subscript𝑝𝑐𝛾432𝜅subscript𝑝𝑐superscriptsubscript𝜏𝑤32subscript𝜌𝑐\displaystyle=\sqrt{\frac{\kappa\rho_{c}^{2}}{4\tau_{w}p_{c}}};~{}~{}~{}~{}% \gamma=\frac{4}{3}\sqrt{2\kappa p_{c}}(\tau_{w})^{3/2}\rho_{c}.= square-root start_ARG divide start_ARG italic_κ italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG end_ARG ; italic_γ = divide start_ARG 4 end_ARG start_ARG 3 end_ARG square-root start_ARG 2 italic_κ italic_p start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG ( italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT .

The superscripts in ρvsatsuperscriptsubscript𝜌vsat\rho_{\text{v}}^{\text{sat}}italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT and ρlsatsuperscriptsubscript𝜌lsat\rho_{\text{l}}^{\text{sat}}italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT mean that these densities are defined under saturation condition. We define the density ratio under saturation condition:

rρsat=ρlsatρvsatrρsat=1+τw1τw.formulae-sequencesuperscriptsubscript𝑟𝜌satsuperscriptsubscript𝜌lsatsuperscriptsubscript𝜌vsatsuperscriptsubscript𝑟𝜌sat1subscript𝜏𝑤1subscript𝜏𝑤r_{\rho}^{\text{sat}}=\frac{\rho_{\text{l}}^{\text{sat}}}{\rho_{\text{v}}^{% \text{sat}}}\quad\Rightarrow\quad r_{\rho}^{\text{sat}}=\frac{1+\tau_{w}}{1-% \tau_{w}}.italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT = divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT end_ARG ⇒ italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT = divide start_ARG 1 + italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT end_ARG start_ARG 1 - italic_τ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT end_ARG . (45)

The fluid temperature is related to rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT. Thus, throughout this work, we opt to inform the reader rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT instead of the fluid temperature. For instance, our problem has only three independent parameters, which are dimensionless quantities: pv/psatsubscript𝑝vsubscript𝑝satp_{\mathrm{v}}/p_{\mathrm{sat}}italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT / italic_p start_POSTSUBSCRIPT roman_sat end_POSTSUBSCRIPT, rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT and νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT.

Considering a system of length Lsuperscript𝐿L^{\ast}italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, we first initialize the density profile using the hyperbolic tangent function:

ρ(x)=ρv+ρlρv2[tanh(x12ξ)tanh(x22ξ)]𝜌superscript𝑥subscript𝜌vsubscript𝜌lsubscript𝜌v2delimited-[]tanhsubscriptsuperscript𝑥12superscript𝜉tanhsubscriptsuperscript𝑥22superscript𝜉\rho(x^{\ast})=\rho_{\mathrm{v}}+\frac{\rho_{\mathrm{l}}-\rho_{\mathrm{v}}}{2}% \left[\mathrm{tanh}\left(\frac{x^{\ast}_{1}}{\sqrt{2}\xi^{\ast}}\right)-% \mathrm{tanh}\left(\frac{x^{\ast}_{2}}{\sqrt{2}\xi^{\ast}}\right)\right]italic_ρ ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_ρ start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT + divide start_ARG italic_ρ start_POSTSUBSCRIPT roman_l end_POSTSUBSCRIPT - italic_ρ start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG [ roman_tanh ( divide start_ARG italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 end_ARG italic_ξ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_ARG ) - roman_tanh ( divide start_ARG italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 end_ARG italic_ξ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_ARG ) ] (46)

with x1=x0.25Lsuperscriptsubscript𝑥1superscript𝑥0.25superscript𝐿x_{1}^{\ast}=x^{\ast}-0.25L^{\ast}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - 0.25 italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, x2=x0.75Lsuperscriptsubscript𝑥2superscript𝑥0.75superscript𝐿x_{2}^{\ast}=x^{\ast}-0.75L^{\ast}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - 0.75 italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and ξ=ξpv/(ρvκ)superscript𝜉𝜉subscript𝑝vsubscript𝜌v𝜅\xi^{\ast}=\xi\sqrt{p_{\mathrm{v}}}/(\rho_{\mathrm{v}}\sqrt{\kappa})italic_ξ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_ξ square-root start_ARG italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT end_ARG / ( italic_ρ start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT square-root start_ARG italic_κ end_ARG ).

The initialization of the velocity profile is discussed later. After defining the macroscopic quantities, the distribution function is initialized to be equal to its equilibrium counterpart (35). Periodic boundary conditions are applied in the bottom and top to reproduce the 1D case. In the side boundaries, the chemical potential and the density are fixed for the vapor value.

There is a key point to discuss regarding viscosity. We have observed that in some simulations, particularly at low viscosity, oscillations in the density and velocity profiles can arise during the initial transient regime. To ensure that these oscillations are quickly damped, we assign a relaxation time of 1 in the bulk region while keeping the desired relaxation time at the interface. The higher viscosity in the bulk rapidly suppresses these oscillations, allowing the system to converge more quickly to a steady interface velocity. Importantly, this approach has no impact on the final result.

The final velocity of the interface should not depend on the initial conditions of the system but rather on the boundary conditions and fluid properties. To verify this, we simulated Cases 1 and 2, as shown in Figure 3. In Case 1, the system is initialized with the velocity profile obtained from the analytical solution (33) and (10). In Case 2, the system is initialized with zero velocity. It is observed that, although the transient period differs between the two cases, the final interface velocity remains entirely independent of the initial condition. Therefore, we chose to initialize the system using the analytical solution to achieve a shorter transient period.

Refer to caption
Figure 3: Interface velocity uintsuperscriptsubscript𝑢intu_{\mathrm{int}}^{\ast}italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT along time tsuperscript𝑡t^{\ast}italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for LBM simulations in OpenLB Krause et al. (2020). All cases runned with rρsat=32superscriptsubscript𝑟𝜌sat32r_{\rho}^{\text{sat}}=32italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT = 32, pv=0.95psatsubscript𝑝v0.95subscript𝑝satp_{\mathrm{v}}=0.95p_{\mathrm{sat}}italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT = 0.95 italic_p start_POSTSUBSCRIPT roman_sat end_POSTSUBSCRIPT and ν=1superscript𝜈1\nu^{\ast}=1italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1. Case 1: L=83superscript𝐿83L^{\ast}=83italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 83, initial velocity equal to analytical solution (33). Case 2: L=83superscript𝐿83L^{\ast}=83italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 83, initial velocity equal to zero. Case 3: L=166superscript𝐿166L^{\ast}=166italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 166, initial velocity equal to zero.

Furthermore, even when initializing with the analytical solution, a slight oscillation in the interface velocity can be observed, as recorded in Figure 3. This occurs because fisubscript𝑓𝑖f_{i}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is initialized equal to fieqsuperscriptsubscript𝑓𝑖eqf_{i}^{\mathrm{eq}}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT, which is only an approximation rather than the exact condition.

As previously mentioned, the analytical solution depends solely on the boundary conditions and fluid properties. Consequently, the final interface velocity should be entirely independent of the domain size Lsuperscript𝐿L^{\ast}italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. This behavior can be observed in the comparison between Cases 2 and 3 in Figure 3. Case 3 shares the same simulation conditions as Case 2 but with a domain size Lsuperscript𝐿L^{\ast}italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT that is twice as large. Despite differences in the transient regime, the final interface velocity is identical in both cases.

Refer to caption
Figure 4: Interface velocity uintsuperscriptsubscript𝑢intu_{\mathrm{int}}^{\ast}italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT dependency on interface resolution ξ/Δx𝜉Δ𝑥\xi/\Delta xitalic_ξ / roman_Δ italic_x for LBM simulations in OpenLB Krause et al. (2020). Results at t=200superscript𝑡200t^{\ast}=200italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 200 with L=83superscript𝐿83L^{\ast}=83italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 83, rρsat=32superscriptsubscript𝑟𝜌sat32r_{\rho}^{\mathrm{sat}}=32italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_sat end_POSTSUPERSCRIPT = 32, pv=0.95psatsubscript𝑝v0.95subscript𝑝satp_{\mathrm{v}}=0.95p_{\mathrm{sat}}italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT = 0.95 italic_p start_POSTSUBSCRIPT roman_sat end_POSTSUBSCRIPT and ν=1superscript𝜈1\nu^{\ast}=1italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1.

Finally, before presenting the results, we conducted a mesh study to determine the appropriate resolution for the simulations. To this end, we ran a case with rρsat=32superscriptsubscript𝑟𝜌sat32r_{\rho}^{\mathrm{sat}}=32italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_sat end_POSTSUPERSCRIPT = 32, pv=0.99psatsubscript𝑝v0.99subscript𝑝satp_{\mathrm{v}}=0.99p_{\mathrm{sat}}italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT = 0.99 italic_p start_POSTSUBSCRIPT roman_sat end_POSTSUBSCRIPT and ν=1superscript𝜈1\nu^{\ast}=1italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1. Since the domain length is not relevant, we used the interface resolution, given by ξ/Δx𝜉Δ𝑥\xi/\Delta xitalic_ξ / roman_Δ italic_x, as a measure of the simulation resolution. This value provides an estimate of the number of nodes that occupy the interface. The results are presented in Figure 4. The difference in uintsubscript𝑢intu_{\mathrm{int}}italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT between resolutions 10 and 20 was only 0.027%, indicating that a resolution of 10 is appropriate for simulations.

VI Results

VI.1 Verifying modeling validity

Before testing the inviscid case analytical solution (28) and the viscid case approximate solution (33), we validate the physical equations that lead to our solution. The validations are based on comparisons with numerical simulations using the free-energy LBM proposed by WagnerWagner (2006) and implemented in OpenLBKrause et al. (2020). Based on the results, we show that the effects described here are actually induced by the physical equations.

Equation (16) is crucial to our work, since it defines the changes of the pressure, given in (4), due to momentum exchange and friction forces acting at the interface. To evaluate the effect of each of those terms, we adopt the following definitions:

pnon-idealpEOS+κ2(ρx)2κρ2ρx2,subscript𝑝non-idealsubscript𝑝EOS𝜅2superscript𝜌superscript𝑥2𝜅𝜌superscript2𝜌superscript𝑥2p_{\text{non-ideal}}\coloneqq p_{\mathrm{EOS}}+\frac{\kappa}{2}\left(\frac{% \partial\rho}{\partial x^{\prime}}\right)^{2}-\kappa\rho\frac{\partial^{2}\rho% }{\partial x^{\prime 2}},italic_p start_POSTSUBSCRIPT non-ideal end_POSTSUBSCRIPT ≔ italic_p start_POSTSUBSCRIPT roman_EOS end_POSTSUBSCRIPT + divide start_ARG italic_κ end_ARG start_ARG 2 end_ARG ( divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_κ italic_ρ divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT end_ARG , (47a)
pmomentumpv+ρl2uint2(1ρv1ρ),subscript𝑝momentumsubscript𝑝vsuperscriptsubscript𝜌l2superscriptsubscript𝑢int21subscript𝜌v1𝜌p_{\text{momentum}}\coloneqq p_{\mathrm{v}}+\rho_{\mathrm{l}}^{2}u_{\mathrm{% int}}^{2}\left(\frac{1}{\rho_{\mathrm{v}}}-\frac{1}{\rho}\right),italic_p start_POSTSUBSCRIPT momentum end_POSTSUBSCRIPT ≔ italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT roman_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG ) , (47b)
pfrictionpv+2ρluintρdρdx,subscript𝑝frictionsubscript𝑝v2subscript𝜌lsubscript𝑢int𝜌𝑑𝜌𝑑superscript𝑥p_{\text{friction}}\coloneqq p_{\mathrm{v}}+2\rho_{\mathrm{l}}u_{\mathrm{int}}% {\rho}\frac{d\rho}{dx^{\prime}},italic_p start_POSTSUBSCRIPT friction end_POSTSUBSCRIPT ≔ italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT + 2 italic_ρ start_POSTSUBSCRIPT roman_l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT italic_ρ divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG , (47c)
ptotalpv+ρl2uint2(1ρv1ρ)+2ρluintνρdρdx.subscript𝑝totalsubscript𝑝vsuperscriptsubscript𝜌l2superscriptsubscript𝑢int21subscript𝜌v1𝜌2subscript𝜌lsubscript𝑢int𝜈𝜌𝑑𝜌𝑑superscript𝑥p_{\text{total}}\coloneqq p_{\mathrm{v}}+\rho_{\mathrm{l}}^{2}u_{\mathrm{int}}% ^{2}\left(\frac{1}{\rho_{\mathrm{v}}}-\frac{1}{\rho}\right)+2\rho_{\mathrm{l}}% u_{\mathrm{int}}\frac{\nu}{\rho}\frac{d\rho}{dx^{\prime}}.italic_p start_POSTSUBSCRIPT total end_POSTSUBSCRIPT ≔ italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT roman_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG ) + 2 italic_ρ start_POSTSUBSCRIPT roman_l end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT divide start_ARG italic_ν end_ARG start_ARG italic_ρ end_ARG divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_d italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG . (47d)

We perform an LBM simulation using rρsat=2superscriptsubscript𝑟𝜌sat2r_{\rho}^{\mathrm{sat}}=2italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_sat end_POSTSUPERSCRIPT = 2, pv=0.99psatsubscript𝑝v0.99subscript𝑝satp_{\mathrm{v}}=0.99p_{\mathrm{sat}}italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT = 0.99 italic_p start_POSTSUBSCRIPT roman_sat end_POSTSUBSCRIPT, and ν=0.5superscript𝜈0.5\nu^{\ast}=0.5italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0.5, running the simulation until a steady-state velocity solution is reached. From the resulting density and velocity fields, we compute (47a), (47b), (47c), and (47d). The first- and second-order derivatives in these equations are approximated using central finite differences with second-order accuracy.

Refer to caption
Figure 5: Pressure psuperscript𝑝p^{\ast}italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT (left vertical axis) and density ρsuperscript𝜌\rho^{\ast}italic_ρ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT (right vertical axis) along domain length xsuperscript𝑥x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Dimensionless quantities are defined in (5). Pressure definitions are given in (47). Simulation results with rρsat=2superscriptsubscript𝑟𝜌sat2r_{\rho}^{\mathrm{sat}}=2italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_sat end_POSTSUPERSCRIPT = 2, pv=0.99psatsubscript𝑝v0.99subscript𝑝satp_{\mathrm{v}}=0.99p_{\mathrm{sat}}italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT = 0.99 italic_p start_POSTSUBSCRIPT roman_sat end_POSTSUBSCRIPT and ν=1superscript𝜈1\nu^{\ast}=1italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1 obtained from LBM implemented in OpenLBKrause et al. (2020).

In Figure 5 we show the density profile for this simulation and how pnon-idealsubscript𝑝non-idealp_{\text{non-ideal}}italic_p start_POSTSUBSCRIPT non-ideal end_POSTSUBSCRIPT and ptotalsubscript𝑝totalp_{\text{total}}italic_p start_POSTSUBSCRIPT total end_POSTSUBSCRIPT change along the interface region. Both pressures are equivalent which is consistent with (16). We observe that going from the vapor region and crossing the interface, pnon-idealsubscript𝑝non-idealp_{\text{non-ideal}}italic_p start_POSTSUBSCRIPT non-ideal end_POSTSUBSCRIPT grows, reaching a peak inside the interface region and then decreasing towards the liquid region. The value of pnon-idealsubscript𝑝non-idealp_{\text{non-ideal}}italic_p start_POSTSUBSCRIPT non-ideal end_POSTSUBSCRIPT is larger inside the liquid region in comparison with the vapor region.

In Figure 5 we observe that pmomentumsubscript𝑝momentump_{\text{momentum}}italic_p start_POSTSUBSCRIPT momentum end_POSTSUBSCRIPT grows continuously from the vapor region to the liquid region due to momentum exchange across the interface. In the bulk regions pnon-idealsubscript𝑝non-idealp_{\text{non-ideal}}italic_p start_POSTSUBSCRIPT non-ideal end_POSTSUBSCRIPT is equal to pmomentumsubscript𝑝momentump_{\text{momentum}}italic_p start_POSTSUBSCRIPT momentum end_POSTSUBSCRIPT indicating that the momentum exchange is the only responsible for the pressure difference between bulk phases.

Finally, we also plot pfrictionsubscript𝑝frictionp_{\text{friction}}italic_p start_POSTSUBSCRIPT friction end_POSTSUBSCRIPT in Figure 5. The value of this quantity grows inside the interface due to the velocity gradient across the interface. However, the friction does not contribute to change the pressure between the two bulk phases. The numerical results support our physical model. Any possible physical inconsistency of this solution will be related to the diffuse interface model and not with any further consideration.

VI.2 Comparison with lattice Boltzmann method

We compare the analytical approximation given by (33) against results obtained from LBM simulations. To assess the model’s robustness, we consider three representative density ratios, rρsat=2superscriptsubscript𝑟𝜌sat2r_{\rho}^{\text{sat}}=2italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT = 2, 8888, and 32323232. We then analyze how the interface velocity uintsuperscriptsubscript𝑢intu_{\mathrm{int}}^{\ast}italic_u start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT varies as a function of the kinematic viscosity νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Simulations are performed across a range of pressure ratios defined as fp=pv/psatsubscript𝑓psubscript𝑝vsubscript𝑝satf_{\text{p}}=p_{\text{v}}/p_{\text{sat}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT / italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT.

It is important to note that the viscid solution given by (33) is an approximation and may deviate from the exact solution of the underlying differential equation. However, the free-energy LBM is a consistent numerical method for solving the mass and momentum conservation equations, and its results converge to the exact solution as the spatial and temporal resolution increases. Therefore, we use high-resolution LBM simulations as a reference to assess the accuracy of our analytical approximation.

Refer to caption
Figure 6: Dependency of interface velocity uintsubscriptsuperscript𝑢intu^{\ast}_{\mathrm{int}}italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT on fluid kinematic viscosity νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for fixed rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT and different values of fp=pv/psatsubscript𝑓psubscript𝑝vsubscript𝑝satf_{\text{p}}=p_{\mathrm{v}}/p_{\text{sat}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT / italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT. Dimensionless quantities are defined in (5). Points represent simulation results using LBM implemented in OpenLBKrause et al. (2020). Lines represent approximate solution (33).

The results of this comparison are shown in Figure 6. The overall behavior of the solution is qualitatively similar across all cases. For very low viscosities, the solution converges to the inviscid limit given by (28). Conversely, when νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is sufficiently large, the interface velocity becomes small and the quadratic term uint2superscriptsubscript𝑢int2u_{\text{int}}^{2}italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT in (32a) can be neglected. In this high-viscosity regime, the interface velocity exhibits an inverse dependence on the viscosity.

A selection of relative errors between the analytical approximation and the LBM results is compiled in Table 1. Three main trends can be identified from the data: First, the approximation becomes less accurate as the viscosity νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT increases. This is consistent with the construction of our solution, which is derived from the inviscid limit and, therefore, performs best in low-viscosity regimes. Second, the error also increases as the pressure fraction fp=pv/psatsubscript𝑓psubscript𝑝vsubscript𝑝satf_{\text{p}}=p_{\text{v}}/p_{\text{sat}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT / italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT decreases. A third trend is observed with respect to the density ratio. For lower values such as rρsat=2superscriptsubscript𝑟𝜌sat2r_{\rho}^{\text{sat}}=2italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT = 2, the approximation becomes significantly less accurate. This suggests that, near the critical point—where the density ratio approaches unity—the interface becomes more sensitive to viscous effects. Since our approximation relies on the assumption of proximity to the inviscid case, its accuracy degrades in this regime, where the influence of viscosity becomes more pronounced.

Table 1: Relative error between the analytical approximation and LBM simulations for different density ratios rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT, pressure fractions fpsubscript𝑓pf_{\text{p}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT, and viscosities νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT.
rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT fpsubscript𝑓pf_{\text{p}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT νsuperscript𝜈\nu^{\ast}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT Relative error (%)
32 0.99 0.025 0.02
32 0.99 6.4 0.28
32 0.90 0.025 0.35
32 0.90 6.4 2.91
8 0.99 0.025 0.024
8 0.99 6.4 0.26
8 0.90 0.025 0.10
8 0.90 6.4 3.10
2 0.99 0.025 0.20
2 0.99 6.4 10.02
2 0.97 0.2 3.10
2 0.97 6.4 24.81

These observations help delineate the validity range of the proposed approximation. The solution consistently yields accurate results in the low-viscosity regime. Moreover, we observe that if the density ratio remains above 8 and the pressure fraction exceeds 0.90, the approximation remains reliable across a broad range of viscosities. For rρsat=2superscriptsubscript𝑟𝜌sat2r_{\rho}^{\text{sat}}=2italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT = 2, however, some low-viscosity cases could not be simulated due to stability limitations inherent to the BGK collision operator at small relaxation times.

VI.3 Comparison with sharp interface solution

JametJamet (2004) modeled a similar problem using a sharp-interface approach. His formulation is based on the framework originally proposed by IshiiIshii (1975), which derives from applying jump conditions across the interface under the assumption of thermodynamic equilibrium. Under this assumption, the following equation is obtained (see Ishii(Ishii, 1975, p.41, Eq.(2-106)); Jamet(Jamet, 2004, Eq. (16))):

pv=psat12ρvρlρlρv(uvul)2.subscript𝑝vsubscript𝑝sat12subscript𝜌𝑣subscript𝜌𝑙subscript𝜌𝑙subscript𝜌𝑣superscriptsubscript𝑢𝑣subscript𝑢𝑙2p_{\text{v}}=p_{\text{sat}}-\frac{1}{2}\frac{\rho_{v}\rho_{l}}{\rho_{l}-\rho_{% v}}(u_{v}-u_{l})^{2}.italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_ρ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT - italic_ρ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_ARG ( italic_u start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (48)

Assuming symmetry in our test case, such that ul=0subscript𝑢l0u_{\text{l}}=0italic_u start_POSTSUBSCRIPT l end_POSTSUBSCRIPT = 0, and using (10), we obtain:

uint=psatpvρl22(1ρv1ρl).subscript𝑢intsubscript𝑝satsubscript𝑝vsuperscriptsubscript𝜌l221subscript𝜌v1subscript𝜌lu_{\text{int}}=\sqrt{\frac{p_{\text{sat}}-p_{\text{v}}}{\frac{\rho_{\text{l}}^% {2}}{2}\left(\frac{1}{\rho_{\text{v}}}-\frac{1}{\rho_{\text{l}}}\right)}}.italic_u start_POSTSUBSCRIPT int end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT - italic_p start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG start_ARG divide start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT v end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT l end_POSTSUBSCRIPT end_ARG ) end_ARG end_ARG . (49)

This relation shares similarities with (28). In fact, (49) can be derived from (28) if we assume:

ρvρlpEOSρ2𝑑ρ=ρvρlpsatρ2𝑑ρ.superscriptsubscriptsubscript𝜌𝑣subscript𝜌𝑙subscript𝑝EOSsuperscript𝜌2differential-d𝜌superscriptsubscriptsubscript𝜌𝑣subscript𝜌𝑙subscript𝑝satsuperscript𝜌2differential-d𝜌\int_{\rho_{v}}^{\rho_{l}}\frac{p_{\text{EOS}}}{\rho^{2}}\,d\rho=\int_{\rho_{v% }}^{\rho_{l}}\frac{p_{\text{sat}}}{\rho^{2}}\,d\rho.∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_p start_POSTSUBSCRIPT EOS end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_ρ = ∫ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_ρ . (50)

This is essentially the Maxwell construction, which holds under thermodynamic equilibrium. However, under non-equilibrium conditions, this approximation may no longer be valid. Moreover, this macroscopic model does not capture the dependence of the evaporation flux on viscosity.

Refer to caption
Figure 7: Dependency of interface velocity uintsubscriptsuperscript𝑢intu^{\ast}_{\mathrm{int}}italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT on the density ratio rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT for different values of fp=pv/psatsubscript𝑓psubscript𝑝vsubscript𝑝satf_{\text{p}}=p_{\mathrm{v}}/p_{\text{sat}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT / italic_p start_POSTSUBSCRIPT sat end_POSTSUBSCRIPT. Plot shows a comparison between our inviscid solution (28) and Jamet solution (49).

Next, we compare our inviscid solution (28) with the sharp-interface model given by (49). The results for different values of rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT and fpsubscript𝑓pf_{\text{p}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT are shown in Figure 7. Overall, the two solutions exhibit excellent agreement. Noticeable deviations are observed only when fpsubscript𝑓pf_{\text{p}}italic_f start_POSTSUBSCRIPT p end_POSTSUBSCRIPT is significantly reduced (e.g., to 0.7), or near the critical point, where rρsatsuperscriptsubscript𝑟𝜌satr_{\rho}^{\text{sat}}italic_r start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sat end_POSTSUPERSCRIPT approaches unity.

For general purposes, we conclude that the two models yield comparable predictions across a wide range of conditions. In future work, we intend to extend this comparison by incorporating LBM simulations using more stable collision operators. At present, the use of the BGK operator restricts us from accessing sufficiently low viscosity to fully explore the inviscid regime.

VII Conclusion

This work presents an analytical approximation to the problem of isothermal evaporation under sub-saturation pressure conditions using a diffuse interface model. For the inviscid case, our solution is exact. By avoiding traditional assumptions such as local thermodynamic equilibrium at the interface, the proposed approach offers a new perspective on the relationship between evaporation rates and viscosity. The derived solution is evidenced against numerical simulation results produced with an LBM implemented in OpenLB, demonstrating excellent agreement and reinforcing its physical consistency.

The findings highlight the potential of diffuse interface models in studying phase change phenomena, not only as a predictive tool but also as a benchmark for numerical methods. The results provide clear evidence that the evaporation dynamics, including interface velocity, are strongly influenced by fluid viscosity, which is often overlooked in existing literature. Furthermore, this found analytical solution can serve as a reference for experimental validation of diffuse interface methodologies or as a basis for future refinements of these models.

Future work could extend this approach to non-isothermal conditions and multi-component systems, enabling broader applications in practical scenarios such as fuel atomization and heat transfer processes. By bridging the gap between analytical models and numerical simulations, this study contributes to a more comprehensive and accurate modeling of phase-change phenomena in complex systems.

Acknowledgments

We acknowledge the support of the Alexander von Humboldt Foundation in sponsoring the postdoctoral fellowship of researcher Dr. Luiz Eduardo Czelusniak at LBRG, KIT.

References

  • Fathi et al. (2022) F. Fathi, S. N. Ebrahimi, L. C. Matos, M. B. PP Oliveira,  and R. C. Alves,  Comprehensive Reviews in Food Science and Food Safety 21, 1125 (2022), DOI: 10.1111/1541-4337.12898.
  • Al-Jammali et al. (2023) A. S. I. Al-Jammali, A. A. Amooey,  and S. R. Nabavi,  Chemical Papers 77, 1067 (2023), DOI: 10.1007/s11696-022-02518-0.
  • Skiborowski (2023) M. Skiborowski,  Current Opinion in Chemical Engineering 42, 100985 (2023), DOI: 10.1016/j.coche.2023.100985.
  • Abdelrahman et al. (2025) A. M. Abdelrahman, A. Khadir, D. Santoro, E. Jang, A. Al-Omari, C. Muller, K. Y. Bell, J. Walton, D. Batstone,  and G. Nakhla,  Bioresource Technology 416, 131753 (2025), DOI: 10.1016/j.biortech.2024.131753.
  • Di Tullio et al. (2023) V. Di Tullio, R. Pigliapochi, N. Zumbulyadis, S. A. Centeno, J. Catalano, M. Wagner,  and C. Dybowski,  Microchemical Journal 190, 108582 (2023), DOI: 10.1016/j.microc.2023.108582.
  • Abdullah et al. (2023) S. Abdullah, M. N. B. M. Zubir, M. R. B. Muhamad, K. M. S. Newaz, H. F. Öztop, M. S. Alam,  and K. Shaikh,  Energy and Buildings 283, 112805 (2023), DOI: 10.1016/j.enbuild.2023.112805.
  • Polski et al. (2024) C. Polski, T. Polski, J. Roman, R. Wróblewski, J. Bartoszewicz,  and B. Ceran,  Applied Thermal Engineering 236, 121661 (2024), DOI: 10.1016/j.applthermaleng.2023.121661.
  • Hertz (1882) H. Hertz,  Annalen der Physik 253, 177 (1882), DOI: 10.1002/andp.18822531002.
  • Knudsen (1909) M. Knudsen,  Annalen der Physik 333, 999 (1909), DOI: 10.1002/andp.19093330505.
  • Hołyst et al. (2015) R. Hołyst, M. Litniewski,  and D. Jakubczyk,  Soft Matter 11, 7201 (2015), DOI: 10.1039/c5sm01508a.
  • Persad and Ward (2016) A. H. Persad and C. A. Ward, Chemical reviews 116, 7727 (2016).
  • Schrage (1953) R. Schrage,  “A theoretical study of interphase mass transfer,”  (1953), DOI: 10.7312/schr901627.
  • Stefan (1891) J. Stefan,  Annalen der Physik 278, 269 (1891).
  • Scriven (1995) L. Scriven,  Chemical engineering science 50, 3907 (1995), DOI: 10.1016/0009-2509(59)80019-1.
  • Cossali and Tonini (2023) G. Cossali and S. Tonini,  Applied Mathematical Modelling 114, 61 (2023), DOI: 10.1016/j.apm.2022.09.023.
  • Álvarez-Hostos et al. (2024) J. C. Álvarez-Hostos, M. R. Mascotto, A. D. Bencomo, A. J. Sarache-Piña,  and V. D. Fachinotti,  International Communications in Heat and Mass Transfer 153, 107327 (2024), DOI: 10.1016/j.icheatmasstransfer.2024.107327.
  • Municchi et al. (2022) F. Municchi, I. El Mellas, O. Matar,  and M. Magnini,  International Journal of Heat and Mass Transfer 195, 123166 (2022), DOI: 10.1016/j.ijheatmasstransfer.2022.123166.
  • Wang et al. (2023) J. Wang, G. Liang, X. Yin,  and S. Shen,  International Journal of Thermal Sciences 187, 108170 (2023), DOI: 10.1016/j.ijthermalsci.2023.108170.
  • Municchi et al. (2024) F. Municchi, C. Markides, O. Matar,  and M. Magnini,  Applied Thermal Engineering 238, 122039 (2024), DOI: 10.1016/j.applthermaleng.2023.122039.
  • Manova et al. (2022) S. Manova, L. G. Asirvatham, A. A. Appadurai, G. Ribatski, P. Kumar,  and S. Wongwises,  Energy Conversion and Management 268, 115997 (2022), DOI: 10.1016/j.enconman.2022.115997.
  • Baptistella et al. (2023) V. E. C. Baptistella, T. A. Moreira,  and G. Ribatski,  Experimental Thermal and Fluid Science 144, 110877 (2023), DOI: 10.1016/j.expthermflusci.2023.110877.
  • Marchetto et al. (2024) D. B. Marchetto, R. Revellin, R. Rullière,  and G. Ribatski,  International Journal of Heat and Mass Transfer 220, 124986 (2024), DOI: 10.1016/j.ijheatmasstransfer.2023.124986.
  • Jacqmin (1999) D. Jacqmin,  Journal of Computational Physics 155, 96 (1999), DOI: 10.1006/jcph.1999.6332.
  • Lamorgese et al. (2011) A. G. Lamorgese, D. Molin,  and R. Mauri,  Milan Journal of Mathematics 79, 597 (2011), DOI: 10.1007/s00032-011-0171-6.
  • Kim (2012) J. Kim,  Communications in Computational Physics 12, 613 (2012), DOI: 10.4208/cicp.301110.040811a.
  • Novick-Cohen (2008) A. Novick-Cohen,  Handbook of differential equations: evolutionary equations 4, 201 (2008), DOI: 10.1016/S1874-5717(08)00004-2.
  • Lee et al. (2014) D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun,  and J. Kim,  Computational Materials Science 81, 216 (2014), DOI: 10.1016/j.commatsci.2013.08.027.
  • Feng and Prohl (2003) X. Feng and A. Prohl,  Numerische Mathematik 94, 33 (2003), DOI: 10.1007/s00211-002-0413-1.
  • Wang et al. (2016) H. Wang, Z. Chai, B. Shi,  and H. Liang,  Physical Review E 94, 033304 (2016), DOI: 10.1103/PhysRevE.94.033304.
  • Feng et al. (2007) X. Feng, Y. He,  and C. Liu,  Mathematics of computation 76, 539 (2007), DOI: 10.1090/S0025-5718-06-01915-6.
  • Qiao et al. (2015) L. Qiao, Z. Zeng,  and H. Xie,  Procedia Engineering 126, 507 (2015), DOI: 10.1016/j.proeng.2015.11.292.
  • Hua et al. (2014) H. Hua, J. Shin,  and J. Kim,  Journal of Fluids Engineering 136, 021301 (2014), DOI: 10.1115/1.4025658.
  • Swift et al. (1996) M. R. Swift, E. Orlandini, W. Osborn,  and J. Yeomans,  Physical Review E 54, 5041 (1996), DOI: 10.1103/PhysRevE.54.5041.
  • Semprebon et al. (2016) C. Semprebon, T. Krüger,  and H. Kusumaatmaja,  Phys. Rev. E 93, 033305 (2016), DOI: 10.1103/PhysRevE.93.033305.
  • Simonis et al. (2024) S. Simonis, J. Nguyen, S. J. Avis, W. Dörfler,  and M. J. Krause,  Discrete and Continuous Dynamical Systems-S 17, 3278 (2024), DOI: 10.3934/dcdss.2023069.
  • Shan and Chen (1993) X. Shan and H. Chen,  Physical Review E 47 (1993), DOI: 10.1103/PhysRevE.47.1815.
  • Shan and Chen (1994) X. Shan and H. Chen,  Physical Review E 49, 2941 (1994), DOI: 10.1103/PhysRevE.49.2941.
  • Ito et al. (2024) S. Ito, J. Jeßberger, S. Simonis, F. Bukreev, A. Kummerländer, A. Zimmermann, G. Thäter, G. R. Pesch, J. Thöming,  and M. J. Krause,  Computers & Mathematics with Applications 167, 249 (2024), DOI: 10.1016/j.camwa.2024.05.026.
  • Bukreev et al. (2023a) F. Bukreev, S. Simonis, A. Kummerländer, J. Jeßberger,  and M. J. Krause,  Journal of Computational Physics 490, 112301 (2023a), DOI: 10.1016/j.jcp.2023.112301.
  • Bukreev et al. (2024) F. Bukreev, A. Kummerländer, J. Jeßberger, D. Teutscher, S. Simonis, D. Bothe,  and M. J. Krause,  AIAA Journal 0, 1 (2024), DOI: 10.2514/1.J064234.
  • Mink et al. (2022) A. Mink, K. Schediwy, C. Posten, H. Nirschl, S. Simonis,  and M. J. Krause,  Energies 15, 7671 (2022), DOI: 10.3390/en15207671.
  • Kummerländer et al. (2024) A. Kummerländer, F. Bukreev, S. F. R. Berg, M. Dorn,  and M. J. Krause, in  High Performance Computing in Science and Engineering ’22, edited by W. E. Nagel, D. H. Kröner,  and M. M. Resch (Springer Nature Switzerland, Cham, 2024) pp. 233–247, DOI: 10.1007/978-3-031-46870-4_16.
  • Krause et al. (2020) M. J. Krause, A. Kummerländer, S. J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens, M. Gaedtke, N. Hafen, A. Mink, R. Trunk, J. E. Marquardt, M.-L. Maier, M. Haussmann,  and S. Simonis,  Computers & Mathematics with Applications  (2020), DOI: 10.1016/j.camwa.2020.04.033.
  • Foard and Wagner (2009) E. M. Foard and A. J. Wagner,  Physical Review E 79, 056710 (2009), DOI: 10.1103/PhysRevE.79.056710.
  • Jamet (2004) D. Jamet,  Multiphase Science and Technology 16, 1 (2004), DOI: 10.1615/MultScienTechn.v16.i1-3.90.
  • Zeng et al. (2012) W. Zeng, M. Xu, G. Zhang, Y. Zhang,  and D. J. Cleary,  Fuel 95, 287 (2012), DOI: 10.1016/j.fuel.2011.08.048.
  • Wagner (2006) A. Wagner,  Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 74, 056703 (2006), DOI: 10.1103/PhysRevE.74.056703.
  • Krüger et al. (2017) T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva,  and E. M. Viggen,  Springer International Publishing 10, 4 (2017).
  • Vincenti et al. (1966) W. G. Vincenti, C. H. Kruger Jr,  and T. Teichmann,  Physics Today 19, 95 (1966), DOI: 10.1063/1.3047788.
  • Stokes (1845) G. G. Stokes,  Transactions of the Cambridge Philosophical Society 8, 287 (1845), DOI: 10.1017/CBO9780511702242.005.
  • Graves and Argrow (1999) R. E. Graves and B. M. Argrow,  Journal of Thermophysics and Heat Transfer 13, 337 (1999), DOI: 10.2514/2.6443.
  • Kosuge and Aoki (2022) S. Kosuge and K. Aoki,  Fluids 8, 5 (2022), DOI: 10.3390/fluids8010005.
  • Bhatnagar et al. (1954) P. L. Bhatnagar, E. P. Gross,  and M. Krook,  Physical review 94, 511 (1954), DOI: 10.1103/PhysRev.94.511.
  • Korteweg (1901) D. J. Korteweg,  Archives Néerlandaises des Sciences exactes et naturelles 6 (1901).
  • Bougoffa (2010) L. Bougoffa,  Applied mathematics and computation 216, 689 (2010), DOI: doi.org/10.1016/j.amc.2010.01.114.
  • Bukreev et al. (2023b) F. Bukreev, F. Raichle, H. Nirschl,  and M. J. Krause,  Chemical Engineering Science 270, 118485 (2023b), DOI: 10.1016/j.ces.2023.118485.
  • Hafen et al. (2023) N. Hafen, J. E. Marquardt, A. Dittler,  and M. J. Krause,  Fluids 8, 99 (2023), DOI: 10.3390/fluids8030099.
  • Marquardt et al. (2024) J. E. Marquardt, N. Hafen,  and M. J. Krause,  Journal of Computational Science 78, 102263 (2024), DOI: 10.1016/j.jocs.2024.102263.
  • Siodlaczek et al. (2021) M. Siodlaczek, M. Gaedtke, S. Simonis, M. Schweiker, N. Homma,  and M. J. Krause,  Building and Environment 192, 107618 (2021), DOI: 10.1016/j.buildenv.2021.107618.
  • Simonis et al. (2022) S. Simonis, D. Oberle, M. Gaedtke, P. Jenny,  and M. J. Krause,  Journal of Computational Physics 454, 110991 (2022), DOI: 10.1016/j.jcp.2022.110991.
  • Reinke et al. (2022) F. Reinke, N. Hafen, M. Haussmann, M. Novosel, M. J. Krause,  and A. Dittler,  Chemie Ingenieur Technik 94, 348 (2022), DOI: 10.1002/cite.202100151.
  • Jeßberger et al. (2022) J. Jeßberger, J. E. Marquardt, L. Heim, J. Mangold, F. Bukreev,  and M. J. Krause,  Fluids 7, 144 (2022), DOI: 10.3390/fluids7050144.
  • Kummerländer et al. (2025) A. Kummerländer, T. Bingert, F. Bukreev, L. E. Czelusniak, D. Dapelo, C. Gaul, N. Hafen, S. Ito, J. Jeßberger, D. Khazaeipoul, T. Krüger, H. Kusumaatmaja, J. E. Marquardt, A. Raeli, M. Rennick, F. Prinz, M. Schecher, A. Schneider, Y. Shimojima, et al.,  “Openlb release 1.8: Open source lattice boltzmann code (1.8.0),”  (2025), DOI: 10.5281/zenodo.15270117.
  • Li et al. (2012) Q. Li, K. H. Luo, X. Li, et al.,  Physical Review E 86, 016709 (2012), DOI: 10.1103/PhysRevE.86.016709.
  • Briant et al. (2004) A. Briant, A. Wagner,  and J. Yeomans,  Physical Review E 69, 031602 (2004), DOI: 10.1103/PhysRevE.69.031602.
  • Ishii (1975) M. Ishii,  NASA Sti/recon Technical Report A 75, 29657 (1975).