Exploring entanglement, Wigner negativity and Bell nonlocality for anisotropic two-qutrit states

Huan Liu1, Zu-wu Chen1, Xue-feng Zhan1, Hong-chun Yuan2 and Xue-xiang Xu1,† 1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
2School of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China;
xuxuexiang@jxnu.edu.cn
Abstract

We introduce a family of anisotropic two-qutrit states (AITTSs). These AITTSs are expressed as ρaiso=p|ψ(θ,ϕ)ψ(θ,ϕ)|+(1p)199subscript𝜌𝑎𝑖𝑠𝑜𝑝ketsubscript𝜓𝜃italic-ϕbrasubscript𝜓𝜃italic-ϕ1𝑝subscript199\rho_{aiso}=p\left|\psi_{\left(\theta,\phi\right)}\right\rangle\left\langle% \psi_{\left(\theta,\phi\right)}\right|+(1-p)\frac{1_{9}}{9}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT = italic_p | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ⟨ italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT | + ( 1 - italic_p ) divide start_ARG 1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT end_ARG start_ARG 9 end_ARG with |ψ(θ,ϕ)=sinθcosϕ|00+sinθsinϕ|11+cosθ|22ketsubscript𝜓𝜃italic-ϕ𝜃italic-ϕket00𝜃italic-ϕket11𝜃ket22\left|\psi_{\left(\theta,\phi\right)}\right\rangle=\sin\theta\cos\phi\left|00% \right\rangle+\sin\theta\sin\phi\left|11\right\rangle+\cos\theta\left|22\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ = roman_sin italic_θ roman_cos italic_ϕ | 00 ⟩ + roman_sin italic_θ roman_sin italic_ϕ | 11 ⟩ + roman_cos italic_θ | 22 ⟩ and 19=j,k=02|jkjk|subscript19superscriptsubscript𝑗𝑘02ket𝑗𝑘bra𝑗𝑘1_{9}=\sum_{j,k=0}^{2}\left|jk\right\rangle\left\langle jk\right|1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j , italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_j italic_k ⟩ ⟨ italic_j italic_k |. For a given p[0,1]𝑝01p\in[0,1]italic_p ∈ [ 0 , 1 ], these states are adjustable in different (θ,ϕ𝜃italic-ϕ\theta,\phiitalic_θ , italic_ϕ) directions. In the case of (θ,ϕ𝜃italic-ϕ\theta,\phiitalic_θ , italic_ϕ) = (arccos(1/3),π/413𝜋4\arccos(1/\sqrt{3}),\pi/4roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 4), the AITTS will reduce to the isotropic two-qutrit state ρisosubscript𝜌𝑖𝑠𝑜\rho_{iso}italic_ρ start_POSTSUBSCRIPT italic_i italic_s italic_o end_POSTSUBSCRIPT. In addition, the AITTSs are severely affected by the white noise (ρnoise=199subscript𝜌𝑛𝑜𝑖𝑠𝑒subscript199\rho_{noise}=\frac{1_{9}}{9}italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT = divide start_ARG 1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT end_ARG start_ARG 9 end_ARG). Three properties of the AITTSs, including entanglement, Wigner negativity and Bell nonlocality, are explored detailedly in the analytical and numerical ways. Each property is witnessed by an appropriate existing criterion. Some of our results are summarized as follows: (i) Large entanglement does not necessarily mean high Wigner negativity and strong Bell nonlocality. (ii) A pure state with a large Schmidt number does not necessarily have a greater Wigner negativity. (iii) Only when |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ has the Schmidt number 3, the AITTS has the possibility of exhibiting Bell nonlocality in proper parameter range.

Keywords:

I Introduction

In various quantum fields, it is necessary to utilize quantum resources to leverage their advantages. Then, what are quantum resources?1 ; 2 All those quantum properties, we think, having the ability of going beyond classical ones in performing technological tasks, can be regarded as quantum resources. Many properties, such as nonclassicality3 ; 4 ; 5 ; 6 , non-Gaussianity7 ; 8 ; 9 ; 10 , entanglement11 ; 12 ; 13 , steering14 ; 15 ; 16 , Bell nonlocality17 ; 18 , Wigner negativity9 ; 19 ; 20 , contextuality21 ; 22 ; 23 ; 24 ; 25 , and so on, are the quantum resources. Many researchers have studied theoretical advantages and experimental applications of theses properties. Of course, all these properties have their respective certification/quantification ways and are somewhat correlated with each other26 ; 27 ; 28 ; 29 ; 30 .

Mathematically, quantum states describing quantum systems can be represented in various ways such as state vectors, density operators, wave functions, etc 31 ; 32 . As a fundamental tool in quantum mechanics and quantum optics, Wigner function33 ; 34 ; 35 provides a quantum phase-space representation for quantum state in terms of position and momentum, analogous to classical phase space. However, Wigner function is often called as a quasi-probability distribution because it can take negative values. This feature can be quantified by the volumn of the negative part, i.e., Wigner negativity36 ; 37 ; 38 . Physically, Wigner negativity is a rigorous non-classical maker of quantum states39 , which reveals intrinsically non-classical behaviors (e.g., superposition, interference and entanglement)40 ; 41 ; 42 . Some studies have reported that Wigner negativity is the necessary resource for quantum computing43 ; 44 .

As Hudson’s theorem45 established, for a continuous-variable system, the Wigner function of a pure state is non-negative if and only if it is a Gaussian state. While the Wigner function of a mixed state is non-negative if and only if it is a convex mixture of Gaussian states46 . Hudson’s theorem was extended into finite-dimensional systems by Gross47 . They showed that, the Wigner function of a pure state is non-negative if and only if it is a stabilizer state. While the Wigner function of a mixed state is non-negative if and only if it is a convex mixture of stabilizer states48 . In these ways, we can understand that what kind of quantum states can exhibit Wigner negativities.

One can distinguish continuous-variable from discrete-variable quantum state by observing the Wigner function. Compared to the discrete case, people are more familiar with continuous Wigner function. With the development of quantum information, people have become increasingly enthusiastic about studying discrete Wigner functions (DWFs) in the past two decades. The DWFs have become useful tools of studying finite-dimensional quantum states49 ; 50 . In 2004, Gibbon, Hoffman, and Wootter developed the Wigner functions and investigated a class of DWFs51 . Subsequently, Galvao conjectured that the discrete Wigner negativity was necessary for quantum computation speedup52 . In 2017, Kocia and Love studied the DWFs for qubits53 . In 2024, Wootters studied the DWFs for two-qubit states, in order to interpret symplectic linear transformation in phase space54 . Recently, Antonopoulos and his co-workers presented a grand unification for all DWFs55 .

It is well known that, the qubit, as a two-state (or two-level) system, is the basic storage unit of quantum information56 . However, more and more practical quantum protocols require high-dimensional storage units57 ; 58 . This trend triggers considerable researches related with the qudits. As the name suggests, the qudit is the d𝑑ditalic_d-state (or d𝑑ditalic_d-level) physical system, corresponding to d𝑑ditalic_d-dimensional mathematical model. For some technological tasks, qudits perhaps may be more efficient than qubits. In the current era, the internet has become indispensable in our daily lives. Subsequently, the quantum internet59 ; 60 ; 61 came into being, which has aroused extensive research interests of scientists. The main characteristic of quantum internet is to distribute and share information among many sites at a certain distance. Therefore, quantum internet must be realized in multipartite scenarios. Above mentioned reasons are driving the advances in multipartite and high-dimensional systems62 ; 63 ; 64 .

Every knows that entanglement is the crucial resource to achieve quantum advantageous. In recent years, many groups are dedicated to studying the entanglement for high-dimensional systems65 ; 66 ; 67 ; 68 ; 69 ; 70 . In addition, Bell nonlocality becomes another current hot research topic. Since Bell proposed the original idea of using inequalities to witness nonlocality71 , many researchers have conducted extensive researches on nonlocality. Most of works focus on two aspects: one is to construct different inequalities by changing measurement scenarios72 ; 73 ; 74 , and the other is to explore the Bell nonlocality for various multipartite and high-dimensional quantum systems75 ; 76 . Recently, Fonseca and his co-workers made a survey the Bell nonlocality of entangled qudits77 . In this regard, we particularly emphasize that, Collins, Gisin, Linden, Massar, and Popescu developed an approach to construct Bell inequalities for any bipartite high-dimensional quantum systems78 . These approach-related Bell inequalities were called the CGLMP-inequalities by later researchers. In the context of the CGLMP-inequalities, many researchers have conducted a large number of studies on Bell non-locality79 ; 80 ; 81 ; 82 .

As the simplest model of the multipartite and high-dimensional systems, two-qutrit states are often chosen as examples to conduct researches on quantum properties83 ; 84 . In fact, two-qutrit states are just bipartite three-dimensional states, which can be used in various physical platforms85 ; 86 ; 87 . In 2012, Gruca, Laskowski, and Zukowski reported the nonclassicality for pure two-qutrit entangled states88 . On the other hand, noises inevitably affects the properties of quantum states. For instance, Roy and his co-workers found that the white noise will affect the robustness of higher-dimensional nonlocality89 . Lifshitz compared and analyzed noise-robustness in various self-testing protocols90 .

Combinating pure two-qutrit states with white noises, we introduce a family of anisotropic two-qutrit states (AITTSs), which are the extension of the isotropic two-qutrit state. To the best of our knowledge, these AITTSs and their detailed properties are not studied completely in previous works. We will explore entanglement, Wigner negativity and Bell-nonlcality for the AITTSs. The paper is organized as follows: In Sec.II, we introduce the AITTSs. In Sec.III, we analyze their entanglement in terms of an appropriate witness. In Sec.IV, we analyze their DWFs, and then study their Wigner negativities. In Sec.V, we study their Bell nonlocality, by checking the violation of the CGLMP inequality. We conclude in the last section.

II Anisotropic two-qutrit states

A single-qutrit state can be described in the Hilbert space spanned by three bases {|0,|1,|2}ket0ket1ket2\{\left|0\right\rangle,\left|1\right\rangle,\left|2\right\rangle\}{ | 0 ⟩ , | 1 ⟩ , | 2 ⟩ }, with |0=(100)Tket0superscript100𝑇\left|0\right\rangle=(\begin{array}[]{ccc}1&0&0\end{array})^{T}| 0 ⟩ = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, |1=(010)Tket1superscript010𝑇\left|1\right\rangle=(\begin{array}[]{ccc}0&1&0\end{array})^{T}| 1 ⟩ = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, and |2=(001)Tket2superscript001𝑇\left|2\right\rangle=(\begin{array}[]{ccc}0&0&1\end{array})^{T}| 2 ⟩ = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT. Consequently, a two-qutrit state can be described in the nine-dimensional space spanned by nine bases, i.e., {|00ket00\left|00\right\rangle| 00 ⟩, |01ket01\left|01\right\rangle| 01 ⟩, |02ket02\left|02\right\rangle| 02 ⟩, |10ket10\left|10\right\rangle| 10 ⟩, |11ket11\left|11\right\rangle| 11 ⟩, |12ket12\left|12\right\rangle| 12 ⟩, |20ket20\left|20\right\rangle| 20 ⟩, |21ket21\left|21\right\rangle| 21 ⟩, |22ket22\left|22\right\rangle| 22 ⟩}. We assume that the two-qutrit state is shared by qutrit A and qutrit B, with |jk=|jA|kBket𝑗𝑘tensor-productsubscriptket𝑗𝐴subscriptket𝑘𝐵\left|jk\right\rangle=\left|j\right\rangle_{A}\otimes\left|k\right\rangle_{B}| italic_j italic_k ⟩ = | italic_j ⟩ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊗ | italic_k ⟩ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT (j,k3={0,1,2}𝑗𝑘subscript3012j,k\in\mathbb{Z}_{3}=\{0,1,2\}italic_j , italic_k ∈ blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = { 0 , 1 , 2 }). In general, pure two-qutrit states can be expressed as |ψpure=j,k=02cjk|jkketsubscript𝜓𝑝𝑢𝑟𝑒superscriptsubscript𝑗𝑘02subscript𝑐𝑗𝑘ket𝑗𝑘\left|\psi_{pure}\right\rangle=\sum_{j,k=0}^{2}c_{jk}\left|jk\right\rangle| italic_ψ start_POSTSUBSCRIPT italic_p italic_u italic_r italic_e end_POSTSUBSCRIPT ⟩ = ∑ start_POSTSUBSCRIPT italic_j , italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT | italic_j italic_k ⟩ with cjksubscript𝑐𝑗𝑘c_{jk}\in\mathbb{C}italic_c start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∈ blackboard_C and j,k=02|cjk|2=1superscriptsubscript𝑗𝑘02superscriptsubscript𝑐𝑗𝑘21\sum_{j,k=0}^{2}\left|c_{jk}\right|^{2}=1∑ start_POSTSUBSCRIPT italic_j , italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_c start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1. For instance, Liang et al. discussed the properties for some pure two-qutrit states, such as (|00+i|22)/2ket00𝑖ket222(\left|00\right\rangle+i\left|22\right\rangle)/\sqrt{2}( | 00 ⟩ + italic_i | 22 ⟩ ) / square-root start_ARG 2 end_ARG, (|11+i|22)/2ket11𝑖ket222(\left|11\right\rangle+i\left|22\right\rangle)/\sqrt{2}( | 11 ⟩ + italic_i | 22 ⟩ ) / square-root start_ARG 2 end_ARG, and (i|02+i|12+|10+|12)/2𝑖ket02𝑖ket12ket10ket122(i\left|02\right\rangle+i\left|12\right\rangle+\left|10\right\rangle+\left|12% \right\rangle)/2( italic_i | 02 ⟩ + italic_i | 12 ⟩ + | 10 ⟩ + | 12 ⟩ ) / 291 .

Many researchers have been conducted on the properties of various isotropic two-qudit states64 ; 65 ; 92 ; 93 . In the case of d=3𝑑3d=3italic_d = 3, we can express the isotropic two-qutrit state as

ρiso=p|Φ3+Φ3+|+(1p)199.subscript𝜌𝑖𝑠𝑜𝑝ketsuperscriptsubscriptΦ3brasuperscriptsubscriptΦ31𝑝subscript199\rho_{iso}=p\left|\Phi_{3}^{+}\right\rangle\left\langle\Phi_{3}^{+}\right|+(1-% p)\frac{1_{9}}{9}.italic_ρ start_POSTSUBSCRIPT italic_i italic_s italic_o end_POSTSUBSCRIPT = italic_p | roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ ⟨ roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT | + ( 1 - italic_p ) divide start_ARG 1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT end_ARG start_ARG 9 end_ARG . (1)

Here, |Φ3+=(|00+|11+|22)/3ketsuperscriptsubscriptΦ3ket00ket11ket223\left|\Phi_{3}^{+}\right\rangle=\left(\left|00\right\rangle+\left|11\right% \rangle+\left|22\right\rangle\right)/\sqrt{3}| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ = ( | 00 ⟩ + | 11 ⟩ + | 22 ⟩ ) / square-root start_ARG 3 end_ARG is the maximally entangled two-qutrit state (i.e., qutrit Bell state). And, 199=ρnoisesubscript199subscript𝜌𝑛𝑜𝑖𝑠𝑒\frac{1_{9}}{9}=\rho_{noise}divide start_ARG 1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT end_ARG start_ARG 9 end_ARG = italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT denotes the two-qutrit white noise, with the 9×9999\times 99 × 9 identity matrix 19=j,k=02|jkjk|subscript19superscriptsubscript𝑗𝑘02ket𝑗𝑘bra𝑗𝑘1_{9}=\sum_{j,k=0}^{2}\left|jk\right\rangle\left\langle jk\right|1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j , italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_j italic_k ⟩ ⟨ italic_j italic_k |. From the form, ρisosubscript𝜌𝑖𝑠𝑜\rho_{iso}italic_ρ start_POSTSUBSCRIPT italic_i italic_s italic_o end_POSTSUBSCRIPT is a mixed state composed of |Φ3+Φ3+|ketsuperscriptsubscriptΦ3brasuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle\left\langle\Phi_{3}^{+}\right|| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ ⟨ roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT | with ratio p𝑝pitalic_p and ρnoisesubscript𝜌𝑛𝑜𝑖𝑠𝑒\rho_{noise}italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT with ratio 1p1𝑝1-p1 - italic_p. In a sense, the parameter p𝑝pitalic_p denotes is the probability that |Φ3+ketsuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ is unaffected by noise.

If |Φ3+ketsuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ of ρisosubscript𝜌𝑖𝑠𝑜\rho_{iso}italic_ρ start_POSTSUBSCRIPT italic_i italic_s italic_o end_POSTSUBSCRIPT in Eq.(1) is replaced by |ψ(θ,ϕ)=sinθcosϕ|00+sinθsinϕ|11+cosθ|22ketsubscript𝜓𝜃italic-ϕ𝜃italic-ϕket00𝜃italic-ϕket11𝜃ket22\left|\psi_{\left(\theta,\phi\right)}\right\rangle=\sin\theta\cos\phi\left|00% \right\rangle+\sin\theta\sin\phi\left|11\right\rangle+\cos\theta\left|22\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ = roman_sin italic_θ roman_cos italic_ϕ | 00 ⟩ + roman_sin italic_θ roman_sin italic_ϕ | 11 ⟩ + roman_cos italic_θ | 22 ⟩, we introduce anisotropic two-qutrit states with the form

ρaiso=p|ψ(θ,ϕ)ψ(θ,ϕ)|+(1p)199.subscript𝜌𝑎𝑖𝑠𝑜𝑝ketsubscript𝜓𝜃italic-ϕbrasubscript𝜓𝜃italic-ϕ1𝑝subscript199\rho_{aiso}=p\left|\psi_{\left(\theta,\phi\right)}\right\rangle\left\langle% \psi_{\left(\theta,\phi\right)}\right|+(1-p)\frac{1_{9}}{9}.italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT = italic_p | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ⟨ italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT | + ( 1 - italic_p ) divide start_ARG 1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT end_ARG start_ARG 9 end_ARG . (2)

For the convenience of writing, these states are abbreviated as AITTSs. And, we assume that they are adjustable within θ[0,π]𝜃0𝜋\theta\in[0,\pi]italic_θ ∈ [ 0 , italic_π ] , ϕ[0,2π]italic-ϕ02𝜋\phi\in[0,2\pi]italic_ϕ ∈ [ 0 , 2 italic_π ] and p[0,1]𝑝01p\in[0,1]italic_p ∈ [ 0 , 1 ]. Two extreme scenarios will happen, that is, ρaisoρnoisesubscript𝜌𝑎𝑖𝑠𝑜subscript𝜌𝑛𝑜𝑖𝑠𝑒\rho_{aiso}\rightarrow\rho_{noise}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT → italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT if p=0𝑝0p=0italic_p = 0 and ρaiso|ψ(θ,ϕ)subscript𝜌𝑎𝑖𝑠𝑜ketsubscript𝜓𝜃italic-ϕ\rho_{aiso}\rightarrow\left|\psi_{\left(\theta,\phi\right)}\right\rangleitalic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT → | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ if p=1𝑝1p=1italic_p = 1. If |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ in Eq.(2) is further replaced by arbitrary |ψpureketsubscript𝜓𝑝𝑢𝑟𝑒\left|\psi_{pure}\right\rangle| italic_ψ start_POSTSUBSCRIPT italic_p italic_u italic_r italic_e end_POSTSUBSCRIPT ⟩, the anisotropic character will be stronger.

In the Hilbert space of two-qutrit systems, ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT can be expanded as

ρaiso=(κ1000τ1000τ20ϵ000000000ϵ000000000ϵ00000τ1000κ2000τ300000ϵ000000000ϵ000000000ϵ0τ2000τ3000κ3)subscript𝜌𝑎𝑖𝑠𝑜subscript𝜅1000subscript𝜏1000subscript𝜏20italic-ϵ000000000italic-ϵ000000000italic-ϵ00000subscript𝜏1000subscript𝜅2000subscript𝜏300000italic-ϵ000000000italic-ϵ000000000italic-ϵ0subscript𝜏2000subscript𝜏3000subscript𝜅3\rho_{aiso}=\left(\begin{array}[]{ccccccccc}\kappa_{1}&0&0&0&\tau_{1}&0&0&0&% \tau_{2}\\ 0&\epsilon&0&0&0&0&0&0&0\\ 0&0&\epsilon&0&0&0&0&0&0\\ 0&0&0&\epsilon&0&0&0&0&0\\ \tau_{1}&0&0&0&\kappa_{2}&0&0&0&\tau_{3}\\ 0&0&0&0&0&\epsilon&0&0&0\\ 0&0&0&0&0&0&\epsilon&0&0\\ 0&0&0&0&0&0&0&\epsilon&0\\ \tau_{2}&0&0&0&\tau_{3}&0&0&0&\kappa_{3}\end{array}\right)italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_κ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_κ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) (3)

with ϵ=(1p)/9italic-ϵ1𝑝9\epsilon=(1-p)/9italic_ϵ = ( 1 - italic_p ) / 9, κ1=psin2θcos2ϕ+ϵsubscript𝜅1𝑝superscript2𝜃superscript2italic-ϕitalic-ϵ\kappa_{1}=p\sin^{2}\theta\cos^{2}\phi+\epsilonitalic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_p roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ + italic_ϵ, κ2=subscript𝜅2absent\kappa_{2}=italic_κ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = psin2θsin2ϕ+ϵ𝑝superscript2𝜃superscript2italic-ϕitalic-ϵp\sin^{2}\theta\sin^{2}\phi+\epsilonitalic_p roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ + italic_ϵ, κ3=subscript𝜅3absent\kappa_{3}=italic_κ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = pcos2θ+ϵ𝑝superscript2𝜃italic-ϵp\cos^{2}\theta+\epsilonitalic_p roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ + italic_ϵ, τ1=(psin2θsin2ϕ)/2subscript𝜏1𝑝superscript2𝜃2italic-ϕ2\tau_{1}=(p\sin^{2}\theta\sin 2\phi)/2italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( italic_p roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ roman_sin 2 italic_ϕ ) / 2, τ2=(psin2θcosϕ)/2subscript𝜏2𝑝2𝜃italic-ϕ2\tau_{2}=(p\sin 2\theta\cos\phi)/2italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( italic_p roman_sin 2 italic_θ roman_cos italic_ϕ ) / 2, τ3=(psin2θsinϕ)/2subscript𝜏3𝑝2𝜃italic-ϕ2\tau_{3}=(p\sin 2\theta\sin\phi)/2italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( italic_p roman_sin 2 italic_θ roman_sin italic_ϕ ) / 2.

For |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩, we would like to give more detailed explanations. Formally, |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ is the special case of |ψpureketsubscript𝜓𝑝𝑢𝑟𝑒\left|\psi_{pure}\right\rangle| italic_ψ start_POSTSUBSCRIPT italic_p italic_u italic_r italic_e end_POSTSUBSCRIPT ⟩ with c00=sinθcosϕsubscript𝑐00𝜃italic-ϕc_{00}=\sin\theta\cos\phiitalic_c start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT = roman_sin italic_θ roman_cos italic_ϕ, c11=sinθsinϕsubscript𝑐11𝜃italic-ϕc_{11}=\sin\theta\sin\phiitalic_c start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT = roman_sin italic_θ roman_sin italic_ϕ, c22=cosθsubscript𝑐22𝜃c_{22}=\cos\thetaitalic_c start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT = roman_cos italic_θ, and c01=c02=c10=c12=c20=c21=0subscript𝑐01subscript𝑐02subscript𝑐10subscript𝑐12subscript𝑐20subscript𝑐210c_{01}=c_{02}=c_{10}=c_{12}=c_{20}=c_{21}=0italic_c start_POSTSUBSCRIPT 01 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 02 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT = 0. Here, we define three coefficients (c00subscript𝑐00c_{00}italic_c start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT, c11subscript𝑐11c_{11}italic_c start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT, and c22subscript𝑐22c_{22}italic_c start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT) of |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ by referring the conversion between spherical coordinates (Radius r=1𝑟1r=1italic_r = 1, polar angle θ𝜃\thetaitalic_θ, and azimuthal angle ϕitalic-ϕ\phiitalic_ϕ) and Cartesian coordinates (x=c00𝑥subscript𝑐00x=c_{00}italic_x = italic_c start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT, y=c11𝑦subscript𝑐11y=c_{11}italic_y = italic_c start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT, and z=c22𝑧subscript𝑐22z=c_{22}italic_z = italic_c start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT). In terms of Schmidt number(Sn)94 ; 95 ; 96 ; 97 determined by the coefficients, |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ may be classified into the following possible Schmidt decompositions.

(Sn-1) If there is only one non-zero coefficient, |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ will be the Sn=1 states, including |ψ(π/2,0)=|00|S1(1)ketsubscript𝜓𝜋20ket00ketsuperscriptsubscript𝑆11\left|\psi_{(\pi/2,0)}\right\rangle=\left|00\right\rangle\equiv\left|S_{1}^{(1% )}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 2 , 0 ) end_POSTSUBSCRIPT ⟩ = | 00 ⟩ ≡ | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩, |ψ(π/2,π/2)=|11|S1(2)ketsubscript𝜓𝜋2𝜋2ket11ketsuperscriptsubscript𝑆12\left|\psi_{(\pi/2,\pi/2)}\right\rangle=\left|11\right\rangle\equiv\left|S_{1}% ^{(2)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 2 , italic_π / 2 ) end_POSTSUBSCRIPT ⟩ = | 11 ⟩ ≡ | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩, |ψ(0,ϕ)=|22|S1(3)ketsubscript𝜓0italic-ϕket22ketsuperscriptsubscript𝑆13\left|\psi_{\left(0,\phi\right)}\right\rangle=\left|22\right\rangle\equiv\left% |S_{1}^{(3)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( 0 , italic_ϕ ) end_POSTSUBSCRIPT ⟩ = | 22 ⟩ ≡ | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩.

(Sn-2) If there are two non-zero coefficients, |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ will be the Sn=2 states, including |ψ(π/2,ϕ)=cosϕ|00+sinϕ|11ketsubscript𝜓𝜋2italic-ϕitalic-ϕket00italic-ϕket11\left|\psi_{\left(\pi/2,\phi\right)}\right\rangle=\cos\phi\left|00\right% \rangle+\sin\phi\left|11\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 2 , italic_ϕ ) end_POSTSUBSCRIPT ⟩ = roman_cos italic_ϕ | 00 ⟩ + roman_sin italic_ϕ | 11 ⟩, |ψ(θ,0)=sinθ|00+cosθ|22ketsubscript𝜓𝜃0𝜃ket00𝜃ket22\left|\psi_{\left(\theta,0\right)}\right\rangle=\sin\theta\left|00\right% \rangle+\cos\theta\left|22\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , 0 ) end_POSTSUBSCRIPT ⟩ = roman_sin italic_θ | 00 ⟩ + roman_cos italic_θ | 22 ⟩, and |ψ(θ,π/2)=sinθ|11+cosθ|22ketsubscript𝜓𝜃𝜋2𝜃ket11𝜃ket22\left|\psi_{\left(\theta,\pi/2\right)}\right\rangle=\sin\theta\left|11\right% \rangle+\cos\theta\left|22\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_π / 2 ) end_POSTSUBSCRIPT ⟩ = roman_sin italic_θ | 11 ⟩ + roman_cos italic_θ | 22 ⟩. Note that we must ensure the condition of two non-zero coefficients. Among these Sn=2 states, |ψ(π/2,π/4)=(|00+|11)/2|S2(1)ketsubscript𝜓𝜋2𝜋4ket00ket112ketsuperscriptsubscript𝑆21\left|\psi_{(\pi/2,\pi/4)}\right\rangle=(\left|00\right\rangle+\left|11\right% \rangle)/\sqrt{2}\equiv\left|S_{2}^{(1)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 2 , italic_π / 4 ) end_POSTSUBSCRIPT ⟩ = ( | 00 ⟩ + | 11 ⟩ ) / square-root start_ARG 2 end_ARG ≡ | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩, |ψ(π/4,0)=(|00+|22)/2|S2(2)ketsubscript𝜓𝜋40ket00ket222ketsuperscriptsubscript𝑆22\left|\psi_{(\pi/4,0)}\right\rangle=(\left|00\right\rangle+\left|22\right% \rangle)/\sqrt{2}\equiv\left|S_{2}^{(2)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 4 , 0 ) end_POSTSUBSCRIPT ⟩ = ( | 00 ⟩ + | 22 ⟩ ) / square-root start_ARG 2 end_ARG ≡ | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩, and |ψ(π/4,π/2)=(|11+|22)/2|S2(3)ketsubscript𝜓𝜋4𝜋2ket11ket222ketsuperscriptsubscript𝑆23\left|\psi_{(\pi/4,\pi/2)}\right\rangle=(\left|11\right\rangle+\left|22\right% \rangle)/\sqrt{2}\equiv\left|S_{2}^{(3)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 4 , italic_π / 2 ) end_POSTSUBSCRIPT ⟩ = ( | 11 ⟩ + | 22 ⟩ ) / square-root start_ARG 2 end_ARG ≡ | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ are the maximally entangled Sn=2 states. Others are the non-maximally entangled Sn=2 states, such as |ψ(π/2,π/6)=32|00+12|11)|S2(4)\left|\psi_{(\pi/2,\pi/6)}\right\rangle=\frac{\sqrt{3}}{2}\left|00\right% \rangle+\frac{1}{2}\left|11\right\rangle)\equiv\left|S_{2}^{(4)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 2 , italic_π / 6 ) end_POSTSUBSCRIPT ⟩ = divide start_ARG square-root start_ARG 3 end_ARG end_ARG start_ARG 2 end_ARG | 00 ⟩ + divide start_ARG 1 end_ARG start_ARG 2 end_ARG | 11 ⟩ ) ≡ | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ⟩, |ψ(π/6,0)=12|00+32|22)|S2(5)\left|\psi_{(\pi/6,0)}\right\rangle=\frac{1}{2}\left|00\right\rangle+\frac{% \sqrt{3}}{2}\left|22\right\rangle)\equiv\left|S_{2}^{(5)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 6 , 0 ) end_POSTSUBSCRIPT ⟩ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG | 00 ⟩ + divide start_ARG square-root start_ARG 3 end_ARG end_ARG start_ARG 2 end_ARG | 22 ⟩ ) ≡ | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ⟩, and |ψ(π/6,π/2)=12|11+32|22|S2(6)ketsubscript𝜓𝜋6𝜋212ket1132ket22ketsuperscriptsubscript𝑆26\left|\psi_{(\pi/6,\pi/2)}\right\rangle=\frac{1}{2}\left|11\right\rangle+\frac% {\sqrt{3}}{2}\left|22\right\rangle\equiv\left|S_{2}^{(6)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_π / 6 , italic_π / 2 ) end_POSTSUBSCRIPT ⟩ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG | 11 ⟩ + divide start_ARG square-root start_ARG 3 end_ARG end_ARG start_ARG 2 end_ARG | 22 ⟩ ≡ | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 6 ) end_POSTSUPERSCRIPT ⟩.

(Sn-3) If there are three non-zero coefficients, |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ will be the Sn=3 states, such as |ψ(arccos(1/3),π/4)=|Φ3+|S3(1)ketsubscript𝜓13𝜋4ketsuperscriptsubscriptΦ3ketsuperscriptsubscript𝑆31\left|\psi_{(\arccos(1/\sqrt{3}),\pi/4)}\right\rangle=\left|\Phi_{3}^{+}\right% \rangle\equiv\left|S_{3}^{(1)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 4 ) end_POSTSUBSCRIPT ⟩ = | roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ ≡ | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ and |ψ(arccos(1/3),π/6)=12|00+16|11+13|22|S3(2)ketsubscript𝜓13𝜋612ket0016ket1113ket22ketsuperscriptsubscript𝑆32\left|\psi_{(\arccos(1/\sqrt{3}),\pi/6)}\right\rangle=\frac{1}{\sqrt{2}}\left|% 00\right\rangle+\frac{1}{\sqrt{6}}\left|11\right\rangle+\frac{1}{\sqrt{3}}% \left|22\right\rangle\equiv\left|S_{3}^{(2)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 6 ) end_POSTSUBSCRIPT ⟩ = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG | 00 ⟩ + divide start_ARG 1 end_ARG start_ARG square-root start_ARG 6 end_ARG end_ARG | 11 ⟩ + divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG | 22 ⟩ ≡ | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩. Since |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ will reduce to |Φ3+ketsuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ if (θ,ϕ)=(arccos(1/3),ϕ=π/4)𝜃italic-ϕ13italic-ϕ𝜋4\left(\theta,\phi\right)=(\arccos(1/\sqrt{3}),\phi=\pi/4)( italic_θ , italic_ϕ ) = ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_ϕ = italic_π / 4 ), ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT in this case will reduce to ρisosubscript𝜌𝑖𝑠𝑜\rho_{iso}italic_ρ start_POSTSUBSCRIPT italic_i italic_s italic_o end_POSTSUBSCRIPT, together with κ1=κ2=κ3=(2p+1)/9subscript𝜅1subscript𝜅2subscript𝜅32𝑝19\kappa_{1}=\kappa_{2}=\kappa_{3}=(2p+1)/9italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_κ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_κ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( 2 italic_p + 1 ) / 9 and τ1=τ2=τ3=p/3subscript𝜏1subscript𝜏2subscript𝜏3𝑝3\tau_{1}=\tau_{2}=\tau_{3}=p/3italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_p / 3. It should be noted that |S3(1)ketsuperscriptsubscript𝑆31\left|S_{3}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ is just |Φ3+ketsuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩, together with arccos(1/3)0.955317similar-to-or-equals130.955317\arccos(1/\sqrt{3})\simeq 0.955317roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) ≃ 0.955317 and π/40.785398similar-to-or-equals𝜋40.785398\pi/4\simeq 0.785398italic_π / 4 ≃ 0.785398.

In our following work, we often use above mentioned eleven states (abbreviated the Sn=n state as |Sn(i)ketsuperscriptsubscript𝑆𝑛𝑖\left|S_{n}^{(i)}\right\rangle| italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ⟩) as examples of |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ to study our considered properties.

III Entanglement of AITTSs

In this section, we shall quantify entanglement for AITTSs by virtue of negativity under partial transposition98 ; 99 . Performing partial transposition in part A (or part B) for ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT, we obtain

ρaisoTA=ρaisoTB=(κ1000000000ϵ0τ10000000ϵ000τ2000τ10ϵ000000000κ2000000000ϵ0τ3000τ2000ϵ0000000τ30ϵ000000000κ3).superscriptsubscript𝜌𝑎𝑖𝑠𝑜subscript𝑇𝐴superscriptsubscript𝜌𝑎𝑖𝑠𝑜subscript𝑇𝐵subscript𝜅1000000000italic-ϵ0subscript𝜏10000000italic-ϵ000subscript𝜏2000subscript𝜏10italic-ϵ000000000subscript𝜅2000000000italic-ϵ0subscript𝜏3000subscript𝜏2000italic-ϵ0000000subscript𝜏30italic-ϵ000000000subscript𝜅3\rho_{aiso}^{T_{A}}=\rho_{aiso}^{T_{B}}=\left(\begin{array}[]{ccccccccc}\kappa% _{1}&0&0&0&0&0&0&0&0\\ 0&\epsilon&0&\tau_{1}&0&0&0&0&0\\ 0&0&\epsilon&0&0&0&\tau_{2}&0&0\\ 0&\tau_{1}&0&\epsilon&0&0&0&0&0\\ 0&0&0&0&\kappa_{2}&0&0&0&0\\ 0&0&0&0&0&\epsilon&0&\tau_{3}&0\\ 0&0&\tau_{2}&0&0&0&\epsilon&0&0\\ 0&0&0&0&0&\tau_{3}&0&\epsilon&0\\ 0&0&0&0&0&0&0&0&\kappa_{3}\end{array}\right).italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_κ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL italic_ϵ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_κ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) . (4)

The matrix of Eq.(14) has nine eigenvalues λ1=κ1subscript𝜆1subscript𝜅1\lambda_{1}=\kappa_{1}italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, λ2=κ2subscript𝜆2subscript𝜅2\lambda_{2}=\kappa_{2}italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_κ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, λ3=κ3subscript𝜆3subscript𝜅3\lambda_{3}=\kappa_{3}italic_λ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_κ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, λ4=ϵτ1subscript𝜆4italic-ϵsubscript𝜏1\lambda_{4}=\epsilon-\tau_{1}italic_λ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = italic_ϵ - italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, λ5=ϵ+τ1subscript𝜆5italic-ϵsubscript𝜏1\lambda_{5}=\epsilon+\tau_{1}italic_λ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = italic_ϵ + italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, λ6=ϵτ2subscript𝜆6italic-ϵsubscript𝜏2\lambda_{6}=\epsilon-\tau_{2}italic_λ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = italic_ϵ - italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, λ7=ϵ+τ2subscript𝜆7italic-ϵsubscript𝜏2\lambda_{7}=\epsilon+\tau_{2}italic_λ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT = italic_ϵ + italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, λ8=ϵτ3subscript𝜆8italic-ϵsubscript𝜏3\lambda_{8}=\epsilon-\tau_{3}italic_λ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = italic_ϵ - italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, and λ9=ϵ+τ3subscript𝜆9italic-ϵsubscript𝜏3\lambda_{9}=\epsilon+\tau_{3}italic_λ start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT = italic_ϵ + italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Adding up all these eigenvalues (j=19λjsuperscriptsubscript𝑗19subscript𝜆𝑗\sum_{j=1}^{9}\lambda_{j}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT) gives Tr(ρaisoTA)=Tr(ρaisoTB)=1Trsuperscriptsubscript𝜌𝑎𝑖𝑠𝑜subscript𝑇𝐴Trsuperscriptsubscript𝜌𝑎𝑖𝑠𝑜subscript𝑇𝐵1\mathrm{Tr}(\rho_{aiso}^{T_{A}})=\mathrm{Tr}(\rho_{aiso}^{T_{B}})=1roman_Tr ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) = roman_Tr ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) = 1 as expected.

The entanglement of ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT is calculated as

(ρaiso)=12(j=19|λj|1),subscript𝜌𝑎𝑖𝑠𝑜12superscriptsubscript𝑗19subscript𝜆𝑗1\mathcal{E}\left(\rho_{aiso}\right)=\frac{1}{2}(\sum_{j=1}^{9}\left|\lambda_{j% }\right|-1),caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT | italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT | - 1 ) , (5)

i.e., minus sum of all negative eigenvalues (iλisubscript𝑖superscriptsubscript𝜆𝑖-\sum_{i}\lambda_{i}^{-}- ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, λi<0superscriptsubscript𝜆𝑖0\lambda_{i}^{-}<0italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT < 0). As references, we list the following special values including (|S1(1))=(|S1(2))=(|S1(3))=0ketsuperscriptsubscript𝑆11ketsuperscriptsubscript𝑆12ketsuperscriptsubscript𝑆130\mathcal{E}(\left|S_{1}^{(1)}\right\rangle)=\mathcal{E}(\left|S_{1}^{(2)}% \right\rangle)=\mathcal{E}(\left|S_{1}^{(3)}\right\rangle)=0caligraphic_E ( | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_E ( | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_E ( | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ ) = 0, (|S2(1))=(|S2(2))=(|S2(3))=0.5ketsuperscriptsubscript𝑆21ketsuperscriptsubscript𝑆22ketsuperscriptsubscript𝑆230.5\mathcal{E}(\left|S_{2}^{(1)}\right\rangle)=\mathcal{E}(\left|S_{2}^{(2)}% \right\rangle)=\mathcal{E}(\left|S_{2}^{(3)}\right\rangle)=0.5caligraphic_E ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_E ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_E ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ ) = 0.5, (|S2(4))=(|S2(5))=(|S2(6))0.481481ketsuperscriptsubscript𝑆24ketsuperscriptsubscript𝑆25ketsuperscriptsubscript𝑆26similar-to-or-equals0.481481\mathcal{E}(\left|S_{2}^{(4)}\right\rangle)=\mathcal{E}(\left|S_{2}^{(5)}% \right\rangle)=\mathcal{E}(\left|S_{2}^{(6)}\right\rangle)\simeq 0.481481caligraphic_E ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_E ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_E ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 6 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 0.481481, (|S3(1))=1ketsuperscriptsubscript𝑆311\mathcal{E}(\left|S_{3}^{(1)}\right\rangle)=1caligraphic_E ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = 1, (|S3(2))0.932626similar-to-or-equalsketsuperscriptsubscript𝑆320.932626\mathcal{E}(\left|S_{3}^{(2)}\right\rangle)\simeq 0.932626caligraphic_E ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 0.932626, and (ρnoise)=0subscript𝜌𝑛𝑜𝑖𝑠𝑒0\mathcal{E}\left(\rho_{noise}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) = 0.

Figure 1 depicts the variation of entanglement (ρaiso)subscript𝜌𝑎𝑖𝑠𝑜\mathcal{E}\left(\rho_{aiso}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) versus p𝑝pitalic_p for eleven (θ,ϕ)𝜃italic-ϕ(\theta,\phi)( italic_θ , italic_ϕ ) cases. There are five curves in this figure. Each curve is illustrated as follows:

(eL1) The first curve corresponds to the cases of (θ,ϕ)=(π/2,0)𝜃italic-ϕ𝜋20\left(\theta,\phi\right)=(\pi/2,0)( italic_θ , italic_ϕ ) = ( italic_π / 2 , 0 ), (π/2,π/2)𝜋2𝜋2(\pi/2,\pi/2)( italic_π / 2 , italic_π / 2 ), (0,ϕ)0italic-ϕ\left(0,\phi\right)( 0 , italic_ϕ ). It satisfy (ρaiso)0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)\equiv 0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≡ 0 for any p[0,1]𝑝01p\in[0,1]italic_p ∈ [ 0 , 1 ].

(eL2) The second curve corresponds to the cases of (θ,ϕ)=(π/2,π/6)𝜃italic-ϕ𝜋2𝜋6\left(\theta,\phi\right)=(\pi/2,\pi/6)( italic_θ , italic_ϕ ) = ( italic_π / 2 , italic_π / 6 ), (π/6,0)𝜋60(\pi/6,0)( italic_π / 6 , 0 ), (π/6,π/2)𝜋6𝜋2(\pi/6,\pi/2)( italic_π / 6 , italic_π / 2 ). It is a piecewise function line, satisfying (ρaiso)=0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p0.2042020𝑝less-than-or-similar-to0.2042020\leq p\lesssim 0.2042020 ≤ italic_p ≲ 0.204202 and (ρaiso)0.544124p1/9similar-to-or-equalssubscript𝜌𝑎𝑖𝑠𝑜0.544124𝑝19\mathcal{E}\left(\rho_{aiso}\right)\simeq 0.544124p-1/9caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.544124 italic_p - 1 / 9 in the interval of 0.204202p1less-than-or-similar-to0.204202𝑝10.204202\lesssim p\leq 10.204202 ≲ italic_p ≤ 1.

(eL3) The third curve corresponds to the cases of (θ,ϕ)=(π/2,π/4)𝜃italic-ϕ𝜋2𝜋4\left(\theta,\phi\right)=(\pi/2,\pi/4)( italic_θ , italic_ϕ ) = ( italic_π / 2 , italic_π / 4 ), (π/4,0)𝜋40(\pi/4,0)( italic_π / 4 , 0 ), (π/4,π/2)𝜋4𝜋2(\pi/4,\pi/2)( italic_π / 4 , italic_π / 2 ). It is a piecewise function line, satisfying (ρaiso)=0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p2/110𝑝2110\leq p\leq 2/110 ≤ italic_p ≤ 2 / 11 and (ρaiso)=subscript𝜌𝑎𝑖𝑠𝑜absent\mathcal{E}\left(\rho_{aiso}\right)=caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 11p/181/911𝑝181911p/18-1/911 italic_p / 18 - 1 / 9 in the interval of 2/11p1less-than-or-similar-to211𝑝12/11\lesssim p\leq 12 / 11 ≲ italic_p ≤ 1.

(eL4) The fourth curve corresponds to the case of (θ,ϕ)=(arccos(1/3),π/6)𝜃italic-ϕ13𝜋6\left(\theta,\phi\right)=(\arccos(1/\sqrt{3}),\pi/6)( italic_θ , italic_ϕ ) = ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 6 ). It is also a piecewise function line, satisfying (ρaiso)=0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p0.2139390𝑝less-than-or-similar-to0.2139390\leq p\lesssim 0.2139390 ≤ italic_p ≲ 0.213939, (ρaiso)similar-to-or-equalssubscript𝜌𝑎𝑖𝑠𝑜absent\mathcal{E}\left(\rho_{aiso}\right)\simeqcaligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.519359p1/90.519359𝑝190.519359p-1/90.519359 italic_p - 1 / 9 in the interval of 0.213939p0.277926less-than-or-similar-to0.213939𝑝less-than-or-similar-to0.2779260.213939\lesssim p\lesssim 0.2779260.213939 ≲ italic_p ≲ 0.277926, (ρaiso)0.919146p2/9similar-to-or-equalssubscript𝜌𝑎𝑖𝑠𝑜0.919146𝑝29\mathcal{E}\left(\rho_{aiso}\right)\simeq 0.919146p-2/9caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.919146 italic_p - 2 / 9 in the interval of 0.277926p0.320377less-than-or-similar-to0.277926𝑝less-than-or-similar-to0.3203770.277926\lesssim p\lesssim 0.3203770.277926 ≲ italic_p ≲ 0.320377, and (ρaiso)similar-to-or-equalssubscript𝜌𝑎𝑖𝑠𝑜absent\mathcal{E}\left(\rho_{aiso}\right)\simeqcaligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 1.26596p1/31.26596𝑝131.26596p-1/31.26596 italic_p - 1 / 3 in the interval of 0.320377p1less-than-or-similar-to0.320377𝑝10.320377\lesssim p\leq 10.320377 ≲ italic_p ≤ 1.

(eL5) The fifth curve corresponds to the case of (θ,ϕ)=(arccos(1/3),π/4)𝜃italic-ϕ13𝜋4\left(\theta,\phi\right)=(\arccos(1/\sqrt{3}),\pi/4)( italic_θ , italic_ϕ ) = ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 4 ). It is also a piecewise function line, satisfying (ρaiso)=0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p0.250𝑝less-than-or-similar-to0.250\leq p\lesssim 0.250 ≤ italic_p ≲ 0.25 and (ρaiso)4p/31/3similar-to-or-equalssubscript𝜌𝑎𝑖𝑠𝑜4𝑝313\mathcal{E}\left(\rho_{aiso}\right)\simeq 4p/3-1/3caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 4 italic_p / 3 - 1 / 3 in the interval of 0.25p1less-than-or-similar-to0.25𝑝10.25\lesssim p\leq 10.25 ≲ italic_p ≤ 1.

From above numerical results, we can infer that, for different (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) cases, there are different evolution curves of (ρaiso)subscript𝜌𝑎𝑖𝑠𝑜\mathcal{E}\left(\rho_{aiso}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) over p𝑝pitalic_p. When |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ is the Sn=1 state, (ρaiso)subscript𝜌𝑎𝑖𝑠𝑜\mathcal{E}\left(\rho_{aiso}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) remains at zero in the whole p𝑝pitalic_p range. When |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ is not the Sn=1 state, (ρaiso)subscript𝜌𝑎𝑖𝑠𝑜\mathcal{E}\left(\rho_{aiso}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) will change with the p𝑝pitalic_p-value. For each (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) case, there will be a p𝑝pitalic_p-value range satisfying (ρaiso)=0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0. That is to say, only when p𝑝pitalic_p-value exceeds a certain threshold, it is possible to observe 𝒩(ρaiso)>0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)>0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 0 for a given (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) case. This can be seen from Fig.2, which depicts the feasibility regions satisfying (ρaiso)>0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)>0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 0 in (θ,ϕ,p)𝜃italic-ϕ𝑝\left(\theta,\phi,p\right)( italic_θ , italic_ϕ , italic_p ) space.

Refer to caption
Figure 1: (ρaiso)subscript𝜌𝑎𝑖𝑠𝑜\mathcal{E}\left(\rho_{aiso}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) versus p𝑝pitalic_p for eleven (θ𝜃\thetaitalic_θ, ϕitalic-ϕ\phiitalic_ϕ) cases. There are only five variation curves. For p=1𝑝1p=1italic_p = 1, (ρaiso)subscript𝜌𝑎𝑖𝑠𝑜\mathcal{E}\left(\rho_{aiso}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) values are 0 0\ 0, 0.4330130.4330130.4330130.433013, 0.50.50.50.5, 0.9326260.9326260.9326260.932626, 1111 in sequence.
Refer to caption
Figure 2: Three-dimensional feasibility region of (ρaiso)>0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)>0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 0 showing entanglement in (θ,ϕ,p)𝜃italic-ϕ𝑝(\theta,\phi,p)( italic_θ , italic_ϕ , italic_p ) space. The blank region is that satisfying (ρaiso)=0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0.

As expected, we further verify that the maximum entanglement value (max(ρaiso)=1superscriptsubscript𝜌𝑎𝑖𝑠𝑜1\mathcal{E}^{\max}\left(\rho_{aiso}\right)=1caligraphic_E start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 1) is positioned at (θ,ϕ,p)(0.955317,0.785398,1)similar-to-or-equals𝜃italic-ϕ𝑝0.9553170.7853981\left(\theta,\phi,p\right)\simeq\left(0.955317,0.785398,1\right)( italic_θ , italic_ϕ , italic_p ) ≃ ( 0.955317 , 0.785398 , 1 ), which corresponds exactly to the maximum entangled state |Φ3+ketsuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩, i.e. (|Φ3+)=1ketsuperscriptsubscriptΦ31\mathcal{E}(\left|\Phi_{3}^{+}\right\rangle)=1caligraphic_E ( | roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ ) = 1.

IV Wigner negativity of AITTSs

In this section, we shall analyze the DWFs and study Wigner negativities for the AITTSs. Regarding the foundations of this section, one can refer to two relevant works from Delfose’s group100 and Meyer’s group101 .

IV.1 Discrete Wigner function

Similar to the qubit Pauli operators σx=(0110)subscript𝜎𝑥0110\sigma_{x}=\left(\begin{array}[]{cc}0&1\\ 1&0\end{array}\right)italic_σ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) and σz=(1001)subscript𝜎𝑧1001\sigma_{z}=\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right)italic_σ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW end_ARRAY ), one can introduce the qutrit Pauli operators

X=k=02|k+1k|=(001100010),𝑋superscriptsubscript𝑘02ket𝑘1bra𝑘001100010X=\sum_{k=0}^{2}\left|k+1\right\rangle\left\langle k\right|=\left(\begin{array% }[]{ccc}0&0&1\\ 1&0&0\\ 0&1&0\end{array}\right),italic_X = ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_k + 1 ⟩ ⟨ italic_k | = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , (6)

and

Z=k=02ωk|kk|=(1000ω000ω2),𝑍superscriptsubscript𝑘02superscript𝜔𝑘ket𝑘bra𝑘1000𝜔000superscript𝜔2Z=\sum_{k=0}^{2}\omega^{k}\left|k\right\rangle\left\langle k\right|=\left(% \begin{array}[]{ccc}1&0&0\\ 0&\omega&0\\ 0&0&\omega^{2}\end{array}\right),italic_Z = ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ω start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT | italic_k ⟩ ⟨ italic_k | = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ω end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) , (7)

with ω=e2πi3𝜔superscript𝑒2𝜋𝑖3\omega=e^{\frac{2\pi i}{3}}italic_ω = italic_e start_POSTSUPERSCRIPT divide start_ARG 2 italic_π italic_i end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT. They obey X|k=|(k+1) mod 3𝑋ket𝑘ket𝑘1 mod 3X\left|k\right\rangle=\left|\left(k+1\right)\text{ mod }3\right\rangleitalic_X | italic_k ⟩ = | ( italic_k + 1 ) mod 3 ⟩, Z|k=ωk|k𝑍ket𝑘superscript𝜔𝑘ket𝑘Z\left|k\right\rangle=\omega^{k}\left|k\right\rangleitalic_Z | italic_k ⟩ = italic_ω start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT | italic_k ⟩, and ZzXx=ωxzXxZzsuperscript𝑍𝑧superscript𝑋𝑥superscript𝜔𝑥𝑧superscript𝑋𝑥superscript𝑍𝑧Z^{z}X^{x}=\omega^{xz}X^{x}Z^{z}italic_Z start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT = italic_ω start_POSTSUPERSCRIPT italic_x italic_z end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT for x,z,k3𝑥𝑧𝑘subscript3x,z,k\in\mathbb{Z}_{3}italic_x , italic_z , italic_k ∈ blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

For a qutrit, the Wiger operator in phase point (ux,uz)subscript𝑢𝑥subscript𝑢𝑧\left(u_{x},u_{z}\right)( italic_u start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) is defined as

A(ux,uz)=13vx=02vz=02ωuzvxuxvzD(vx,vz),subscript𝐴subscript𝑢𝑥subscript𝑢𝑧13superscriptsubscriptsubscript𝑣𝑥02superscriptsubscriptsubscript𝑣𝑧02superscript𝜔subscript𝑢𝑧subscript𝑣𝑥subscript𝑢𝑥subscript𝑣𝑧subscript𝐷subscript𝑣𝑥subscript𝑣𝑧A_{\left(u_{x},u_{z}\right)}=\frac{1}{3}\sum_{v_{x}=0}^{2}\sum_{v_{z}=0}^{2}% \omega^{u_{z}v_{x}-u_{x}v_{z}}D_{\left(v_{x},v_{z}\right)},italic_A start_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 3 end_ARG ∑ start_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ω start_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT , (8)

with the Heisenberg-Weyl displacement operator D(x,z)=ω12xzXxZzsubscript𝐷𝑥𝑧superscript𝜔12𝑥𝑧superscript𝑋𝑥superscript𝑍𝑧D_{\left(x,z\right)}=\omega^{\frac{1}{2}xz}X^{x}Z^{z}italic_D start_POSTSUBSCRIPT ( italic_x , italic_z ) end_POSTSUBSCRIPT = italic_ω start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_x italic_z end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT. Therefore, we rewrite A(ux,uz)subscript𝐴subscript𝑢𝑥subscript𝑢𝑧A_{\left(u_{x},u_{z}\right)}italic_A start_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT as A(x,z)subscript𝐴𝑥𝑧A_{\left(x,z\right)}italic_A start_POSTSUBSCRIPT ( italic_x , italic_z ) end_POSTSUBSCRIPT with the following matrix

A(x,z)=13(1+ωx+ω2xω2zx+2+ω2z2x+4+ω2zωz+ωz2x+2+ωzx+52ωz+ωz2x+1+ωzx+121+ω22x+ωx+1ω2zx+3+ω2z2x+3+ω2zω2zx+1+ω2z2x+2+ω2zωz+ωz2x+3+ωzx+321+ω12x+ωx+2).subscript𝐴𝑥𝑧131superscript𝜔𝑥superscript𝜔2𝑥superscript𝜔2𝑧𝑥2superscript𝜔2𝑧2𝑥4superscript𝜔2𝑧superscript𝜔𝑧superscript𝜔𝑧2𝑥2superscript𝜔𝑧𝑥52superscript𝜔𝑧superscript𝜔𝑧2𝑥1superscript𝜔𝑧𝑥121superscript𝜔22𝑥superscript𝜔𝑥1superscript𝜔2𝑧𝑥3superscript𝜔2𝑧2𝑥3superscript𝜔2𝑧superscript𝜔2𝑧𝑥1superscript𝜔2𝑧2𝑥2superscript𝜔2𝑧superscript𝜔𝑧superscript𝜔𝑧2𝑥3superscript𝜔𝑧𝑥321superscript𝜔12𝑥superscript𝜔𝑥2A_{(x,z)}=\frac{1}{3}\allowbreak\left(\begin{array}[]{ccc}1+\omega^{-x}+\omega% ^{-2x}&\omega^{2z-x+2}+\omega^{2z-2x+4}+\omega^{2z}&\omega^{z}+\omega^{z-2x+2}% +\omega^{z-x+\frac{5}{2}}\\ \omega^{z}+\omega^{z-2x+1}+\omega^{z-x+\frac{1}{2}}&1+\omega^{2-2x}+\omega^{-x% +1}&\omega^{2z-x+3}+\omega^{2z-2x+3}+\omega^{2z}\\ \omega^{2z-x+1}+\omega^{2z-2x+2}+\omega^{2z}&\omega^{z}+\omega^{z-2x+3}+\omega% ^{z-x+\frac{3}{2}}&1+\omega^{1-2x}+\omega^{-x+2}\end{array}\right).italic_A start_POSTSUBSCRIPT ( italic_x , italic_z ) end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 3 end_ARG ( start_ARRAY start_ROW start_CELL 1 + italic_ω start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT - 2 italic_x end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_z - italic_x + 2 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 italic_z - 2 italic_x + 4 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 italic_z end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT italic_z - 2 italic_x + 2 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT italic_z - italic_x + divide start_ARG 5 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT italic_z - 2 italic_x + 1 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT italic_z - italic_x + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_CELL start_CELL 1 + italic_ω start_POSTSUPERSCRIPT 2 - 2 italic_x end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT - italic_x + 1 end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_z - italic_x + 3 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 italic_z - 2 italic_x + 3 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 italic_z end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_z - italic_x + 1 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 italic_z - 2 italic_x + 2 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 italic_z end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT italic_z - 2 italic_x + 3 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT italic_z - italic_x + divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_CELL start_CELL 1 + italic_ω start_POSTSUPERSCRIPT 1 - 2 italic_x end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT - italic_x + 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) . (9)

For the AITTSs with the density matrix ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT, the corresponding DWF can be calculated by

W(x1,z1;x2,z2)(ρaiso)=132Tr[(A(x1,z1)A(x2,z2))ρaiso].subscript𝑊subscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2subscript𝜌𝑎𝑖𝑠𝑜1superscript32Trdelimited-[]tensor-productsubscript𝐴subscript𝑥1subscript𝑧1subscript𝐴subscript𝑥2subscript𝑧2subscript𝜌𝑎𝑖𝑠𝑜W_{\left(x_{1},z_{1};x_{2},z_{2}\right)}\left(\rho_{aiso}\right)=\frac{1}{3^{2% }}\mathrm{Tr}[(A_{\left(x_{1},z_{1}\right)}\otimes A_{\left(x_{2},z_{2}\right)% })\rho_{aiso}].italic_W start_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 3 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Tr [ ( italic_A start_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ⊗ italic_A start_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ] . (10)

For every two-qutrit state, there are eighty-one phase points due to (x1,z1;x2,z2)34subscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2superscriptsubscript34\left(x_{1},z_{1};x_{2},z_{2}\right)\in\mathbb{Z}_{3}^{4}( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ∈ blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. In this paper, we will arrange them as follows

W0000W0100W0200W0001W0101W0201W0002W0102W0202W1000W1100W1200W1001W1101W1201W1002W1102W1202W2000W2100W2200W2001W2101W2201W2002W2102W2202W0010W0110W0210W0011W0111W0211W0012W0112W0212W1010W1110W1210W1011W1111W1211W1012W1112W1212W2010W2110W2210W2011W2111W2211W2012W2112W2212W0020W0120W0220W0021W0121W0221W0022W0122W0222W1020W1120W1220W1021W1121W1221W1022W1122W1222W2020W2120W2220W2021W2121W2221W2022W2122W2222.subscript𝑊0000subscript𝑊0100subscript𝑊0200subscript𝑊0001subscript𝑊0101subscript𝑊0201subscript𝑊0002subscript𝑊0102subscript𝑊0202subscript𝑊1000subscript𝑊1100subscript𝑊1200subscript𝑊1001subscript𝑊1101subscript𝑊1201subscript𝑊1002subscript𝑊1102subscript𝑊1202subscript𝑊2000subscript𝑊2100subscript𝑊2200subscript𝑊2001subscript𝑊2101subscript𝑊2201subscript𝑊2002subscript𝑊2102subscript𝑊2202subscript𝑊0010subscript𝑊0110subscript𝑊0210subscript𝑊0011subscript𝑊0111subscript𝑊0211subscript𝑊0012subscript𝑊0112subscript𝑊0212subscript𝑊1010subscript𝑊1110subscript𝑊1210subscript𝑊1011subscript𝑊1111subscript𝑊1211subscript𝑊1012subscript𝑊1112subscript𝑊1212subscript𝑊2010subscript𝑊2110subscript𝑊2210subscript𝑊2011subscript𝑊2111subscript𝑊2211subscript𝑊2012subscript𝑊2112subscript𝑊2212subscript𝑊0020subscript𝑊0120subscript𝑊0220subscript𝑊0021subscript𝑊0121subscript𝑊0221subscript𝑊0022subscript𝑊0122subscript𝑊0222subscript𝑊1020subscript𝑊1120subscript𝑊1220subscript𝑊1021subscript𝑊1121subscript𝑊1221subscript𝑊1022subscript𝑊1122subscript𝑊1222subscript𝑊2020subscript𝑊2120subscript𝑊2220subscript𝑊2021subscript𝑊2121subscript𝑊2221subscript𝑊2022subscript𝑊2122subscript𝑊2222\begin{array}[]{ccccccccc}W_{0000}&W_{0100}&W_{0200}&W_{0001}&W_{0101}&W_{0201% }&W_{0002}&W_{0102}&W_{0202}\\ W_{1000}&W_{1100}&W_{1200}&W_{1001}&W_{1101}&W_{1201}&W_{1002}&W_{1102}&W_{120% 2}\\ W_{2000}&W_{2100}&W_{2200}&W_{2001}&W_{2101}&W_{2201}&W_{2002}&W_{2102}&W_{220% 2}\\ W_{0010}&W_{0110}&W_{0210}&W_{0011}&W_{0111}&W_{0211}&W_{0012}&W_{0112}&W_{021% 2}\\ W_{1010}&W_{1110}&W_{1210}&W_{1011}&W_{1111}&W_{1211}&W_{1012}&W_{1112}&W_{121% 2}\\ W_{2010}&W_{2110}&W_{2210}&W_{2011}&W_{2111}&W_{2211}&W_{2012}&W_{2112}&W_{221% 2}\\ W_{0020}&W_{0120}&W_{0220}&W_{0021}&W_{0121}&W_{0221}&W_{0022}&W_{0122}&W_{022% 2}\\ W_{1020}&W_{1120}&W_{1220}&W_{1021}&W_{1121}&W_{1221}&W_{1022}&W_{1122}&W_{122% 2}\\ W_{2020}&W_{2120}&W_{2220}&W_{2021}&W_{2121}&W_{2221}&W_{2022}&W_{2122}&W_{222% 2}\end{array}.start_ARRAY start_ROW start_CELL italic_W start_POSTSUBSCRIPT 0000 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0100 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0200 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0001 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0101 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0201 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0002 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0102 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0202 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 1000 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1100 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1200 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1001 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1101 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1201 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1002 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1102 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1202 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 2000 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2100 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2200 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2001 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2101 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2201 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2002 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2102 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2202 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 0010 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0110 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0210 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0011 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0111 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0211 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0012 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0112 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0212 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 1010 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1110 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1210 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1011 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1111 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1211 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1012 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1112 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1212 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 2010 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2110 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2210 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2011 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2111 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2211 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2012 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2112 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2212 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 0020 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0120 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0220 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0021 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0121 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0221 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0022 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0122 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 0222 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 1020 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1120 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1220 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1021 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1121 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1221 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1022 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1122 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 1222 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_W start_POSTSUBSCRIPT 2020 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2120 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2220 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2021 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2121 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2221 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2022 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2122 end_POSTSUBSCRIPT end_CELL start_CELL italic_W start_POSTSUBSCRIPT 2222 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY . (11)

Note that Wx1z1x2z2W(x1,z1;x2,z2)subscript𝑊subscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2subscript𝑊subscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2W_{x_{1}z_{1}x_{2}z_{2}}\equiv W_{\left(x_{1},z_{1};x_{2},z_{2}\right)}italic_W start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≡ italic_W start_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT. According to Eqs.(10) and (11), we can obtain the DWF values and plot the DWF figures for ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT.

In Fig.3, we plot the DWFs for |S1(1)ketsuperscriptsubscript𝑆11\left|S_{1}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩, |S1(2)ketsuperscriptsubscript𝑆12\left|S_{1}^{(2)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩, and |S1(3)ketsuperscriptsubscript𝑆13\left|S_{1}^{(3)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩. Their DWFs all have nine points with value 1/9191/91 / 9 and seventy-two points with value 00, i.e. {199199\frac{1}{9}\rightarrow 9divide start_ARG 1 end_ARG start_ARG 9 end_ARG → 9, 0720720\rightarrow 720 → 72}. Moreover, all of their values are non-negative.

In Fig.4, we plot the DWFs for |S2(1)ketsuperscriptsubscript𝑆21\left|S_{2}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩, |S2(2)ketsuperscriptsubscript𝑆22\left|S_{2}^{(2)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩, and |S2(3)ketsuperscriptsubscript𝑆23\left|S_{2}^{(3)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩. Their DWFs all have three points with value 5/815815/815 / 81, six points with value 5/1625162-5/162- 5 / 162, twenty-four points with value 1/16211621/1621 / 162, twenty-four points with value 1/81181-1/81- 1 / 81, twelve points with value 7/16271627/1627 / 162, six points with value 13/1621316213/16213 / 162, and six points with value 2/812812/812 / 81, i.e. {58135813\frac{5}{81}\rightarrow 3divide start_ARG 5 end_ARG start_ARG 81 end_ARG → 3, 5162651626-\frac{5}{162}\rightarrow 6- divide start_ARG 5 end_ARG start_ARG 162 end_ARG → 6, 116224116224\frac{1}{162}\rightarrow 24divide start_ARG 1 end_ARG start_ARG 162 end_ARG → 24, 1812418124-\frac{1}{81}\rightarrow 24- divide start_ARG 1 end_ARG start_ARG 81 end_ARG → 24, 716212716212\frac{7}{162}\rightarrow 12divide start_ARG 7 end_ARG start_ARG 162 end_ARG → 12, 131626131626\frac{13}{162}\rightarrow 6divide start_ARG 13 end_ARG start_ARG 162 end_ARG → 6, 28162816\frac{2}{81}\rightarrow 6divide start_ARG 2 end_ARG start_ARG 81 end_ARG → 6}. For these three states, their DWFs may be negative.

In Fig.5, we plot the DWFs for |S3(1)ketsuperscriptsubscript𝑆31\left|S_{3}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ (see left sub-figure) and ρnoise=19/9subscript𝜌𝑛𝑜𝑖𝑠𝑒subscript199\rho_{noise}=1_{9}/9italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT = 1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT / 9 (see right sub-figure). For |S3(1)ketsuperscriptsubscript𝑆31\left|S_{3}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩, its DWF has eight points with value 5/815815/815 / 81, thirty-six points with value 2/812812/812 / 81, thirty-six points with value 1/81181-1/81- 1 / 81, and one point with value 7/16271627/1627 / 162, i.e. {58185818\frac{5}{81}\rightarrow 8divide start_ARG 5 end_ARG start_ARG 81 end_ARG → 8, 2813628136\frac{2}{81}\rightarrow 36divide start_ARG 2 end_ARG start_ARG 81 end_ARG → 36, 1813618136-\frac{1}{81}\rightarrow 36- divide start_ARG 1 end_ARG start_ARG 81 end_ARG → 36, 7162171621\frac{7}{162}\rightarrow 1divide start_ARG 7 end_ARG start_ARG 162 end_ARG → 1}. That is, the DWF of |Φ3+ketsuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ may be negative. For ρnoisesubscript𝜌𝑛𝑜𝑖𝑠𝑒\rho_{noise}italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT, its DWF has thirty-six points with value 00, thirty-six points with value 1/541541/541 / 54, and nine points with value 1/271271/271 / 27, i.e. {0360360\rightarrow 360 → 36, 1543615436\frac{1}{54}\rightarrow 36divide start_ARG 1 end_ARG start_ARG 54 end_ARG → 36, 12791279\frac{1}{27}\rightarrow 9divide start_ARG 1 end_ARG start_ARG 27 end_ARG → 9}. That is, the DWF of ρnoisesubscript𝜌𝑛𝑜𝑖𝑠𝑒\rho_{noise}italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT is non-negative.

Refer to caption
Figure 3: DWFs for |S1(1)ketsuperscriptsubscript𝑆11\left|S_{1}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩(Left), |S1(2)ketsuperscriptsubscript𝑆12\left|S_{1}^{(2)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩(Middle); |S1(3)ketsuperscriptsubscript𝑆13\left|S_{1}^{(3)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩(Right). They have same 81 values but different distributions.
Refer to caption
Figure 4: DWFs for |S2(1)ketsuperscriptsubscript𝑆21\left|S_{2}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ (Left); |S2(2)ketsuperscriptsubscript𝑆22\left|S_{2}^{(2)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ (Middle); |S2(3)ketsuperscriptsubscript𝑆23\left|S_{2}^{(3)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ (Right). They have same 81 values but different distributions.
Refer to caption
Figure 5: DWFs for |Φ3+=|S3(1)ketsuperscriptsubscriptΦ3ketsuperscriptsubscript𝑆31\left|\Phi_{3}^{+}\right\rangle=\left|S_{3}^{(1)}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ = | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ (Left) and ρnoise=19/9subscript𝜌𝑛𝑜𝑖𝑠𝑒subscript199\rho_{noise}=1_{9}/9italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT = 1 start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT / 9 (Right).

As examples, we only plot the DWFs for |S1(1)ketsuperscriptsubscript𝑆11\left|S_{1}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩, |S1(2)ketsuperscriptsubscript𝑆12\left|S_{1}^{(2)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩, |S1(3)ketsuperscriptsubscript𝑆13\left|S_{1}^{(3)}\right\rangle| italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩, |S2(1)ketsuperscriptsubscript𝑆21\left|S_{2}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩, |S2(2)ketsuperscriptsubscript𝑆22\left|S_{2}^{(2)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩, |S2(3)ketsuperscriptsubscript𝑆23\left|S_{2}^{(3)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩, |S3(1)ketsuperscriptsubscript𝑆31\left|S_{3}^{(1)}\right\rangle| italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ and ρnoisesubscript𝜌𝑛𝑜𝑖𝑠𝑒\rho_{noise}italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT in this work. The DWFs, for |S2(4)ketsuperscriptsubscript𝑆24\left|S_{2}^{(4)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ⟩, |S2(5)ketsuperscriptsubscript𝑆25\left|S_{2}^{(5)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ⟩, |S2(6)ketsuperscriptsubscript𝑆26\left|S_{2}^{(6)}\right\rangle| italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 6 ) end_POSTSUPERSCRIPT ⟩, |S3(2)ketsuperscriptsubscript𝑆32\left|S_{3}^{(2)}\right\rangle| italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ and other ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPTs, are not plotted here.

IV.2 Wigner negativity

For any quantum state, the Wigner function is normalized. As expected, we can definitely verify

x1,z1;x2,z234W(x1,z1;x2,z2)(ρaiso)=1subscriptsubscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2superscriptsubscript34subscript𝑊subscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2subscript𝜌𝑎𝑖𝑠𝑜1\sum_{x_{1},z_{1};x_{2},z_{2}\in\mathbb{Z}_{3}^{4}}W_{\left(x_{1},z_{1};x_{2},% z_{2}\right)}\left(\rho_{aiso}\right)=1∑ start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_W start_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 1 (12)

for any ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT. The amount of the Wigner negativity is just minus the sum of all negative values among the DWF. Hence, the Wigner negativity of ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT can be calculated by

𝒩(ρaiso)=12[x1,z1;x2,z234|W(x1,z1;x2,z2)(ρaiso)|1].𝒩subscript𝜌𝑎𝑖𝑠𝑜12delimited-[]subscriptsubscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2superscriptsubscript34subscript𝑊subscript𝑥1subscript𝑧1subscript𝑥2subscript𝑧2subscript𝜌𝑎𝑖𝑠𝑜1\mathcal{N}\left(\rho_{aiso}\right)=\frac{1}{2}[\sum_{x_{1},z_{1};x_{2},z_{2}% \in\mathbb{Z}_{3}^{4}}\left|W_{\left(x_{1},z_{1};x_{2},z_{2}\right)}\left(\rho% _{aiso}\right)\right|-1].caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ∑ start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT | italic_W start_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) | - 1 ] . (13)

After making numerical calculation, we easily obtain 𝒩(|S1(1))=𝒩(|S1(2))=𝒩(|S1(3))=0𝒩ketsuperscriptsubscript𝑆11𝒩ketsuperscriptsubscript𝑆12𝒩ketsuperscriptsubscript𝑆130\mathcal{N}(\left|S_{1}^{(1)}\right\rangle)=\mathcal{N}(\left|S_{1}^{(2)}% \right\rangle)=\mathcal{N}(\left|S_{1}^{(3)}\right\rangle)=0caligraphic_N ( | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_N ( | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_N ( | italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ ) = 0, 𝒩(|S2(4))=𝒩(|S2(5))=𝒩(|S2(6))0.416975𝒩ketsuperscriptsubscript𝑆24𝒩ketsuperscriptsubscript𝑆25𝒩ketsuperscriptsubscript𝑆26similar-to-or-equals0.416975\mathcal{N}(\left|S_{2}^{(4)}\right\rangle)=\mathcal{N}(\left|S_{2}^{(5)}% \right\rangle)=\mathcal{N}(\left|S_{2}^{(6)}\right\rangle)\simeq 0.416975caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 6 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 0.416975, 𝒩(|S2(1))=𝒩(|S2(2))=𝒩(|S2(3))=13270.481481𝒩ketsuperscriptsubscript𝑆21𝒩ketsuperscriptsubscript𝑆22𝒩ketsuperscriptsubscript𝑆231327similar-to-or-equals0.481481\mathcal{N}(\left|S_{2}^{(1)}\right\rangle)=\mathcal{N}(\left|S_{2}^{(2)}% \right\rangle)=\mathcal{N}(\left|S_{2}^{(3)}\right\rangle)=\frac{13}{27}\simeq 0% .481481caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ ) = divide start_ARG 13 end_ARG start_ARG 27 end_ARG ≃ 0.481481, 𝒩(|S3(2))0.421011similar-to-or-equals𝒩ketsuperscriptsubscript𝑆320.421011\mathcal{N}(\left|S_{3}^{(2)}\right\rangle)\simeq 0.421011caligraphic_N ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 0.421011, 𝒩(|S3(1))=490.444444𝒩ketsuperscriptsubscript𝑆3149similar-to-or-equals0.444444\mathcal{N}(\left|S_{3}^{(1)}\right\rangle)=\frac{4}{9}\simeq 0.444444caligraphic_N ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = divide start_ARG 4 end_ARG start_ARG 9 end_ARG ≃ 0.444444, and 𝒩(ρnoise)=0𝒩subscript𝜌𝑛𝑜𝑖𝑠𝑒0\mathcal{N}\left(\rho_{noise}\right)=0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) = 0. Some of these values can be validated from our plotted DWFs.

Figure 6 depicts the variation of Wigner negativity 𝒩(ρaiso)𝒩subscript𝜌𝑎𝑖𝑠𝑜\mathcal{N}\left(\rho_{aiso}\right)caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) versus p𝑝pitalic_p for eleven (θ,ϕ)𝜃italic-ϕ(\theta,\phi)( italic_θ , italic_ϕ ) cases. There are five curves in this figure. Each curve is illustrated as follows:

(wL1) The first curve corresponds to the cases of (θ,ϕ)=(π/2,0)𝜃italic-ϕ𝜋20\left(\theta,\phi\right)=(\pi/2,0)( italic_θ , italic_ϕ ) = ( italic_π / 2 , 0 ), (π/2,π/2)𝜋2𝜋2(\pi/2,\pi/2)( italic_π / 2 , italic_π / 2 ), (0,ϕ)0italic-ϕ\left(0,\phi\right)( 0 , italic_ϕ ). It satisfy 𝒩(ρaiso)0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)\equiv 0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≡ 0 for any p[0,1]𝑝01p\in[0,1]italic_p ∈ [ 0 , 1 ].

(wL2) The second curve corresponds to the cases of (θ,ϕ)=(π/2,π/6)𝜃italic-ϕ𝜋2𝜋6\left(\theta,\phi\right)=(\pi/2,\pi/6)( italic_θ , italic_ϕ ) = ( italic_π / 2 , italic_π / 6 ), (π/6,0)𝜋60(\pi/6,0)( italic_π / 6 , 0 ), (π/6,π/2)𝜋6𝜋2(\pi/6,\pi/2)( italic_π / 6 , italic_π / 2 ). It is a piecewise function line, satisfying (ρaiso)=0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)=0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p0.3159490𝑝less-than-or-similar-to0.3159490\leq p\lesssim 0.3159490 ≤ italic_p ≲ 0.315949, 𝒩(ρaiso)0.234449p0.0740741similar-to-or-equals𝒩subscript𝜌𝑎𝑖𝑠𝑜0.234449𝑝0.0740741\mathcal{N}\left(\rho_{aiso}\right)\simeq 0.234449p-0.0740741caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.234449 italic_p - 0.0740741 in the interval of 0.315949p0.535898less-than-or-similar-to0.315949𝑝0.5358980.315949\lesssim p\leq 0.5358980.315949 ≲ italic_p ≤ 0.535898, and 𝒩(ρaiso)=0.787346p0.37037𝒩subscript𝜌𝑎𝑖𝑠𝑜0.787346𝑝0.37037\mathcal{N}\left(\rho_{aiso}\right)=0.787346p-0.37037caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0.787346 italic_p - 0.37037 in the interval of 0.535898p1less-than-or-similar-to0.535898𝑝10.535898\lesssim p\leq 10.535898 ≲ italic_p ≤ 1.

(wL3) The third curve corresponds to the cases of (θ,ϕ)=(π/2,π/4)𝜃italic-ϕ𝜋2𝜋4\left(\theta,\phi\right)=(\pi/2,\pi/4)( italic_θ , italic_ϕ ) = ( italic_π / 2 , italic_π / 4 ), (π/4,0)𝜋40(\pi/4,0)( italic_π / 4 , 0 ), (π/4,π/2)𝜋4𝜋2(\pi/4,\pi/2)( italic_π / 4 , italic_π / 2 ). In this curve, there are three typical points (p,𝒩)=(0.285714,0)𝑝𝒩0.2857140\left(p,\mathcal{N}\right)=(0.285714,0)( italic_p , caligraphic_N ) = ( 0.285714 , 0 ), (0.5,1/18)0.5118(0.5,1/18)( 0.5 , 1 / 18 ), (1,23/27)12327(1,23/27)( 1 , 23 / 27 ). This curve is a piecewise function line, satisfying 𝒩(ρaiso)=0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)=0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p0.2857140𝑝less-than-or-similar-to0.2857140\leq p\lesssim 0.2857140 ≤ italic_p ≲ 0.285714, 𝒩(ρaiso)0.259259p0.0740741similar-to-or-equals𝒩subscript𝜌𝑎𝑖𝑠𝑜0.259259𝑝0.0740741\mathcal{N}\left(\rho_{aiso}\right)\simeq 0.259259p-0.0740741caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.259259 italic_p - 0.0740741 in the interval of 0.285714p0.5less-than-or-similar-to0.285714𝑝0.50.285714\lesssim p\leq 0.50.285714 ≲ italic_p ≤ 0.5, and 𝒩(ρaiso)=𝒩subscript𝜌𝑎𝑖𝑠𝑜absent\mathcal{N}\left(\rho_{aiso}\right)=caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 23p/2710/2723𝑝27102723p/27-10/2723 italic_p / 27 - 10 / 27 in the interval of 0.5p1less-than-or-similar-to0.5𝑝10.5\lesssim p\leq 10.5 ≲ italic_p ≤ 1.

(wL4) The fourth curve corresponds to the case of (θ,ϕ)=(arccos(1/3),π/6)𝜃italic-ϕ13𝜋6\left(\theta,\phi\right)=(\arccos(1/\sqrt{3}),\pi/6)( italic_θ , italic_ϕ ) = ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 6 ). It is also a piecewise function line, satisfying 𝒩(ρaiso)=0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)=0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p0.4633610𝑝less-than-or-similar-to0.4633610\leq p\lesssim 0.4633610 ≤ italic_p ≲ 0.463361, 𝒩(ρaiso)0.319725p0.148148similar-to-or-equals𝒩subscript𝜌𝑎𝑖𝑠𝑜0.319725𝑝0.148148\mathcal{N}\left(\rho_{aiso}\right)\simeq 0.319725p-0.148148caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.319725 italic_p - 0.148148 in the interval of 0.463361p0.500194less-than-or-similar-to0.463361𝑝less-than-or-similar-to0.5001940.463361\lesssim p\lesssim 0.5001940.463361 ≲ italic_p ≲ 0.500194, 𝒩(ρaiso)0.615907p0.296296similar-to-or-equals𝒩subscript𝜌𝑎𝑖𝑠𝑜0.615907𝑝0.296296\mathcal{N}\left(\rho_{aiso}\right)\simeq 0.615907p-0.296296caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.615907 italic_p - 0.296296 in the interval of 0.500194p0.61731less-than-or-similar-to0.500194𝑝less-than-or-similar-to0.617310.500194\lesssim p\lesssim 0.617310.500194 ≲ italic_p ≲ 0.61731, and 𝒩(ρaiso)similar-to-or-equals𝒩subscript𝜌𝑎𝑖𝑠𝑜absent\mathcal{N}\left(\rho_{aiso}\right)\simeqcaligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≃ 0.0787166p2+0.753744p0.4113810.0787166superscript𝑝20.753744𝑝0.4113810.0787166p^{2}+0.753744p-0.4113810.0787166 italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 0.753744 italic_p - 0.411381 in the interval of 0.61731p1less-than-or-similar-to0.61731𝑝10.61731\lesssim p\leq 10.61731 ≲ italic_p ≤ 1.

(wL5) The fifth curve corresponds to the case of (θ,ϕ)=(arccos(1/3),π/4)𝜃italic-ϕ13𝜋4\left(\theta,\phi\right)=(\arccos(1/\sqrt{3}),\pi/4)( italic_θ , italic_ϕ ) = ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 4 ). It is also a piecewise function line, satisfying 𝒩(ρaiso)=0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)=0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0 in the interval of 0p0.50𝑝0.50\leq p\leq 0.50 ≤ italic_p ≤ 0.5 and 𝒩(ρaiso)=8p/94/9𝒩subscript𝜌𝑎𝑖𝑠𝑜8𝑝949\mathcal{N}\left(\rho_{aiso}\right)=8p/9-4/9caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 8 italic_p / 9 - 4 / 9 in the interval of 0.5p10.5𝑝10.5\leq p\leq 10.5 ≤ italic_p ≤ 1.

Refer to caption
Figure 6: 𝒩(ρaiso)𝒩subscript𝜌𝑎𝑖𝑠𝑜\mathcal{N}\left(\rho_{aiso}\right)caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) versus p𝑝pitalic_p for eleven (θ𝜃\thetaitalic_θ, ϕitalic-ϕ\phiitalic_ϕ) cases. There are only five variation curves. For p=1𝑝1p=1italic_p = 1, 𝒩(ρaiso)𝒩subscript𝜌𝑎𝑖𝑠𝑜\mathcal{N}\left(\rho_{aiso}\right)caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) values are 0 0\ 0, 0.4169750.4169750.4169750.416975, 0.4210110.4210110.4210110.421011, 4/9494/94 / 9, and 13/27132713/27\ 13 / 27in order from small to large.
Refer to caption
Figure 7: Three-dimensional feasibility region with 𝒩(ρaiso)>0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)>0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 0 showing Wigner negativity in (θ,ϕ,p)𝜃italic-ϕ𝑝(\theta,\phi,p)( italic_θ , italic_ϕ , italic_p ) space. The blank region is that satisfying 𝒩(ρaiso)=0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)=0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 0.

For different (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) cases, the evolution curves of 𝒩(ρaiso)𝒩subscript𝜌𝑎𝑖𝑠𝑜\mathcal{N}\left(\rho_{aiso}\right)caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) over p𝑝pitalic_p are different. In most cases, 𝒩(ρaiso)𝒩subscript𝜌𝑎𝑖𝑠𝑜\mathcal{N}\left(\rho_{aiso}\right)caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) value is not equal to p𝒩(|ψ(θ,ϕ)ψ(θ,ϕ)|)+(1p)𝒩(ρnoise)𝑝𝒩ketsubscript𝜓𝜃italic-ϕbrasubscript𝜓𝜃italic-ϕ1𝑝𝒩subscript𝜌𝑛𝑜𝑖𝑠𝑒p\mathcal{N}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\left% \langle\psi_{\left(\theta,\phi\right)}\right|\right)+(1-p)\mathcal{N}\left(% \rho_{noise}\right)italic_p caligraphic_N ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ⟨ italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT | ) + ( 1 - italic_p ) caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ), except that 𝒩(ρaiso)0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)\equiv 0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≡ 0 when |ψ(θ,ϕ)=|00ketsubscript𝜓𝜃italic-ϕket00\left|\psi_{\left(\theta,\phi\right)}\right\rangle=\left|00\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ = | 00 ⟩, |11ket11\left|11\right\rangle| 11 ⟩, |22ket22\left|22\right\rangle| 22 ⟩. Due to the effects of the noise, the Wigner negativity only occurs when the p𝑝pitalic_p-value exceeds a certain value. This can be seen from Fig.7, which plot the feasibility regions in (θ,ϕ,p)𝜃italic-ϕ𝑝\left(\theta,\phi,p\right)( italic_θ , italic_ϕ , italic_p ) space, satisfying 𝒩(ρaiso)>0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)>0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 0. That is to say, only when p𝑝pitalic_p-value exceeds a certain threshold, it is possible to observe 𝒩(ρaiso)>0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)>0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 0 for a given (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) case.

In addition, we find that 𝒩max(ρaiso)=1327superscript𝒩subscript𝜌𝑎𝑖𝑠𝑜1327\mathcal{N}^{\max}\left(\rho_{aiso}\right)=\frac{13}{27}caligraphic_N start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = divide start_ARG 13 end_ARG start_ARG 27 end_ARG is found for ρaiso|ψ(θ,ϕ)=|S2(i)subscript𝜌𝑎𝑖𝑠𝑜ketsubscript𝜓𝜃italic-ϕketsuperscriptsubscript𝑆2𝑖\rho_{aiso}\rightarrow\left|\psi_{\left(\theta,\phi\right)}\right\rangle=\left% |S_{2}^{(i)}\right\rangleitalic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT → | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ = | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ⟩ (i=1,2,3𝑖123i=1,2,3italic_i = 1 , 2 , 3). It is worth to note that states with stronger entanglement do not necessarily have greater Wigner negativity. For instance, although (|S3(1))ketsuperscriptsubscript𝑆31\mathcal{E}(\left|S_{3}^{(1)}\right\rangle)caligraphic_E ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) is greater than (|S2(i))ketsuperscriptsubscript𝑆2𝑖\mathcal{E}(\left|S_{2}^{(i)}\right\rangle)caligraphic_E ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ⟩ ) (i=1,2,3𝑖123i=1,2,3italic_i = 1 , 2 , 3), 𝒩(|S3(1))𝒩ketsuperscriptsubscript𝑆31\mathcal{N}(\left|S_{3}^{(1)}\right\rangle)caligraphic_N ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) is less than 𝒩(|S2(i))𝒩ketsuperscriptsubscript𝑆2𝑖\mathcal{N}(\left|S_{2}^{(i)}\right\rangle)caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ⟩ ) (i=1,2,3𝑖123i=1,2,3italic_i = 1 , 2 , 3).

V Bell nonlocality of AITTSs

As Meyer et al. pointed out101 , Wigner negativity is necessary for nonlocality in qudit systems. In this section, we study Bell nonlocality for the AITTSs by virtue of the CGLMP inequalities. We consider two separated observers, Alice and Bob. Alice can conduct two different measurements (A1subscript𝐴1A_{1}italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and A2subscript𝐴2A_{2}italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) with respective three outcomes, i.e., A1=jsubscript𝐴1𝑗A_{1}=jitalic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_j (j=0,1,2𝑗012j=0,1,2italic_j = 0 , 1 , 2) and A2=ksubscript𝐴2𝑘A_{2}=kitalic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_k (k=0,1,2𝑘012k=0,1,2italic_k = 0 , 1 , 2). Similarly, Bob can conduct two different measurements (B1subscript𝐵1B_{1}italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and B2subscript𝐵2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) with respective three outcomes, i.e., B1=lsubscript𝐵1𝑙B_{1}=litalic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_l (l=0,1,2𝑙012l=0,1,2italic_l = 0 , 1 , 2) and B2=msubscript𝐵2𝑚B_{2}=mitalic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_m (m=0,1,2𝑚012m=0,1,2italic_m = 0 , 1 , 2). In order to avoid the eigenstates degenerate, we further assume that their eigenstates satisfy

|jA1subscriptket𝑗subscript𝐴1\displaystyle\left|j\right\rangle_{A_{1}}| italic_j ⟩ start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT =\displaystyle== 13n=02ωn(j+α1)|nA,13superscriptsubscript𝑛02superscript𝜔𝑛𝑗subscript𝛼1subscriptket𝑛𝐴\displaystyle\frac{1}{\sqrt{3}}\sum_{n=0}^{2}\omega^{n\left(j+\alpha_{1}\right% )}\left|n\right\rangle_{A},divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ω start_POSTSUPERSCRIPT italic_n ( italic_j + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT | italic_n ⟩ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , (14)
|kA2subscriptket𝑘subscript𝐴2\displaystyle\left|k\right\rangle_{A_{2}}| italic_k ⟩ start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT =\displaystyle== 13n=02ωn(k+α2)|nA,13superscriptsubscript𝑛02superscript𝜔𝑛𝑘subscript𝛼2subscriptket𝑛𝐴\displaystyle\frac{1}{\sqrt{3}}\sum_{n=0}^{2}\omega^{n(k+\alpha_{2})}\left|n% \right\rangle_{A},divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ω start_POSTSUPERSCRIPT italic_n ( italic_k + italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT | italic_n ⟩ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , (15)
|lB1subscriptket𝑙subscript𝐵1\displaystyle\left|l\right\rangle_{B_{1}}| italic_l ⟩ start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT =\displaystyle== 13n=02ωn(l+β1)|nB,13superscriptsubscript𝑛02superscript𝜔𝑛𝑙subscript𝛽1subscriptket𝑛𝐵\displaystyle\frac{1}{\sqrt{3}}\sum_{n=0}^{2}\omega^{n(-l+\beta_{1})}\left|n% \right\rangle_{B},divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ω start_POSTSUPERSCRIPT italic_n ( - italic_l + italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT | italic_n ⟩ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , (16)
|mB2subscriptket𝑚subscript𝐵2\displaystyle\left|m\right\rangle_{B_{2}}| italic_m ⟩ start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT =\displaystyle== 13n=02ωn(m+β2)|nB,13superscriptsubscript𝑛02superscript𝜔𝑛𝑚subscript𝛽2subscriptket𝑛𝐵\displaystyle\frac{1}{\sqrt{3}}\sum_{n=0}^{2}\omega^{n(-m+\beta_{2})}\left|n% \right\rangle_{B},divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ω start_POSTSUPERSCRIPT italic_n ( - italic_m + italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT | italic_n ⟩ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , (17)

which lead to ΠA1(j)=|jA1j|superscriptsubscriptΠsubscript𝐴1𝑗subscriptket𝑗subscript𝐴1bra𝑗\Pi_{A_{1}}^{\left(j\right)}=\left|j\right\rangle_{A_{1}}\left\langle j\right|roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_j ) end_POSTSUPERSCRIPT = | italic_j ⟩ start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟨ italic_j |, ΠA2(k)=|kA2k|superscriptsubscriptΠsubscript𝐴2𝑘subscriptket𝑘subscript𝐴2bra𝑘\Pi_{A_{2}}^{\left(k\right)}=\left|k\right\rangle_{A_{2}}\left\langle k\right|roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT = | italic_k ⟩ start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟨ italic_k |, ΠB1(l)=|lB1l|superscriptsubscriptΠsubscript𝐵1𝑙subscriptket𝑙subscript𝐵1bra𝑙\Pi_{B_{1}}^{\left(l\right)}=\left|l\right\rangle_{B_{1}}\left\langle l\right|roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_l ) end_POSTSUPERSCRIPT = | italic_l ⟩ start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟨ italic_l |, and ΠB2(m)=|mB2m|superscriptsubscriptΠsubscript𝐵2𝑚subscriptket𝑚subscript𝐵2bra𝑚\Pi_{B_{2}}^{\left(m\right)}=\left|m\right\rangle_{B_{2}}\left\langle m\right|roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT = | italic_m ⟩ start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟨ italic_m | (j,k,l,m3𝑗𝑘𝑙𝑚subscript3j,k,l,m\in\mathbb{Z}_{3}italic_j , italic_k , italic_l , italic_m ∈ blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT), respectively.

Now, we let Alice and Bob share the AITTSs. The joint probabilities can be calculated as

P(A1=j,B1=l)𝑃formulae-sequencesubscript𝐴1𝑗subscript𝐵1𝑙\displaystyle P\left(A_{1}=j,B_{1}=l\right)italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_j , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_l ) =\displaystyle== Tr[(ΠA1(j)ΠB1(l))ρaiso],Trdelimited-[]tensor-productsuperscriptsubscriptΠsubscript𝐴1𝑗superscriptsubscriptΠsubscript𝐵1𝑙subscript𝜌𝑎𝑖𝑠𝑜\displaystyle\mathrm{Tr}[(\Pi_{A_{1}}^{\left(j\right)}\otimes\Pi_{B_{1}}^{% \left(l\right)})\rho_{aiso}],roman_Tr [ ( roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_j ) end_POSTSUPERSCRIPT ⊗ roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_l ) end_POSTSUPERSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ] , (18)
P(A1=j,B2=m)𝑃formulae-sequencesubscript𝐴1𝑗subscript𝐵2𝑚\displaystyle P\left(A_{1}=j,B_{2}=m\right)italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_j , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_m ) =\displaystyle== Tr[(ΠA1(j)ΠB2(m))ρaiso],Trdelimited-[]tensor-productsuperscriptsubscriptΠsubscript𝐴1𝑗superscriptsubscriptΠsubscript𝐵2𝑚subscript𝜌𝑎𝑖𝑠𝑜\displaystyle\mathrm{Tr}[(\Pi_{A_{1}}^{\left(j\right)}\otimes\Pi_{B_{2}}^{% \left(m\right)})\rho_{aiso}],roman_Tr [ ( roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_j ) end_POSTSUPERSCRIPT ⊗ roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ] , (19)
P(A2=k,B1=l)𝑃formulae-sequencesubscript𝐴2𝑘subscript𝐵1𝑙\displaystyle P\left(A_{2}=k,B_{1}=l\right)italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_k , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_l ) =\displaystyle== Tr[(ΠA2(k)ΠB1(l))ρaiso],Trdelimited-[]tensor-productsuperscriptsubscriptΠsubscript𝐴2𝑘superscriptsubscriptΠsubscript𝐵1𝑙subscript𝜌𝑎𝑖𝑠𝑜\displaystyle\mathrm{Tr}[(\Pi_{A_{2}}^{\left(k\right)}\otimes\Pi_{B_{1}}^{% \left(l\right)})\rho_{aiso}],roman_Tr [ ( roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT ⊗ roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_l ) end_POSTSUPERSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ] , (20)
P(A2=k,B2=m)𝑃formulae-sequencesubscript𝐴2𝑘subscript𝐵2𝑚\displaystyle P\left(A_{2}=k,B_{2}=m\right)italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_k , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_m ) =\displaystyle== Tr[(ΠA2(k)ΠB2(m))ρaiso].Trdelimited-[]tensor-productsuperscriptsubscriptΠsubscript𝐴2𝑘superscriptsubscriptΠsubscript𝐵2𝑚subscript𝜌𝑎𝑖𝑠𝑜\displaystyle\mathrm{Tr}[(\Pi_{A_{2}}^{\left(k\right)}\otimes\Pi_{B_{2}}^{% \left(m\right)})\rho_{aiso}].roman_Tr [ ( roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT ⊗ roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ] . (21)

Further, we use the CGLMP inequality

3subscript3\displaystyle\mathcal{I}_{3}caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT \displaystyle\equiv [P(A1=B1)+P(B1=A2+1)\displaystyle[P\left(A_{1}=B_{1}\right)+P\left(B_{1}=A_{2}+1\right)[ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_P ( italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 ) (22)
+P(A2=B2)+P(B2=A1)]\displaystyle+P\left(A_{2}=B_{2}\right)+P\left(B_{2}=A_{1}\right)]+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_P ( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ]
[P(A1=B11)+P(B1=A2)\displaystyle-[P\left(A_{1}=B_{1}-1\right)+P\left(B_{1}=A_{2}\right)- [ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 ) + italic_P ( italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )
+P(A2=B21)+P(B2=A11)]\displaystyle+P\left(A_{2}=B_{2}-1\right)+P\left(B_{2}=A_{1}-1\right)]+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 ) + italic_P ( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 ) ]
\displaystyle\leq 2.2\displaystyle 2.2 .

to study the Bell nonlocality for ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT by observing 3(ρaiso)>2subscript3subscript𝜌𝑎𝑖𝑠𝑜2\mathcal{I}_{3}\left(\rho_{aiso}\right)>2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 2 and setting (α1,α2,β1,β2)=(0,1/2,1/4,1/4)subscript𝛼1subscript𝛼2subscript𝛽1subscript𝛽20121414(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2})=(0,1/2,1/4,-1/4)( italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = ( 0 , 1 / 2 , 1 / 4 , - 1 / 4 ).

As our references, we give 3(|S2(1))=3(|S2(2))=3(|S2(3))=0subscript3ketsuperscriptsubscript𝑆21subscript3ketsuperscriptsubscript𝑆22subscript3ketsuperscriptsubscript𝑆230\mathcal{I}_{3}(\left|S_{2}^{(1)}\right\rangle)=\mathcal{I}_{3}(\left|S_{2}^{(% 2)}\right\rangle)=\mathcal{I}_{3}(\left|S_{2}^{(3)}\right\rangle)=0caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ ) = 0, 3(|S2(4))=3(|S2(6))1subscript3ketsuperscriptsubscript𝑆24subscript3ketsuperscriptsubscript𝑆26similar-to-or-equals1\mathcal{I}_{3}(\left|S_{2}^{(4)}\right\rangle)=\mathcal{I}_{3}(\left|S_{2}^{(% 6)}\right\rangle)\simeq 1caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 6 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 1, 3(|S2(1))=3(|S2(3))1.1547subscript3ketsuperscriptsubscript𝑆21subscript3ketsuperscriptsubscript𝑆23similar-to-or-equals1.1547\mathcal{I}_{3}(\left|S_{2}^{(1)}\right\rangle)=\mathcal{I}_{3}(\left|S_{2}^{(% 3)}\right\rangle)\simeq 1.1547caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 1.1547, 3(|S2(5))1.73205similar-to-or-equalssubscript3ketsuperscriptsubscript𝑆251.73205\mathcal{I}_{3}(\left|S_{2}^{(5)}\right\rangle)\simeq 1.73205caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 1.73205, 3(|S2(2))2similar-to-or-equalssubscript3ketsuperscriptsubscript𝑆222\mathcal{I}_{3}(\left|S_{2}^{(2)}\right\rangle)\simeq 2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 2, 3(|S3(1))2.84399similar-to-or-equalssubscript3ketsuperscriptsubscript𝑆312.84399\mathcal{I}_{3}(\left|S_{3}^{(1)}\right\rangle)\simeq 2.84399caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 2.84399, 3(|S3(1))2.87293similar-to-or-equalssubscript3ketsuperscriptsubscript𝑆312.87293\mathcal{I}_{3}(\left|S_{3}^{(1)}\right\rangle)\simeq 2.87293caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) ≃ 2.87293, and 3(ρnoise)=0subscript3subscript𝜌𝑛𝑜𝑖𝑠𝑒0\mathcal{I}_{3}\left(\rho_{noise}\right)=0caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) = 0. Surprisedly, for those Sn-2 states, we find 3(|S2(1))=3(|S2(3))3(|S2(2))subscript3ketsuperscriptsubscript𝑆21subscript3ketsuperscriptsubscript𝑆23subscript3ketsuperscriptsubscript𝑆22\mathcal{I}_{3}(\left|S_{2}^{(1)}\right\rangle)=\mathcal{I}_{3}(\left|S_{2}^{(% 3)}\right\rangle)\neq\mathcal{I}_{3}(\left|S_{2}^{(2)}\right\rangle)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ⟩ ) ≠ caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) and 3(|S2(4))=3(|S2(6))3(|S2(5))subscript3ketsuperscriptsubscript𝑆24subscript3ketsuperscriptsubscript𝑆26subscript3ketsuperscriptsubscript𝑆25\mathcal{I}_{3}(\left|S_{2}^{(4)}\right\rangle)=\mathcal{I}_{3}(\left|S_{2}^{(% 6)}\right\rangle)\neq\mathcal{I}_{3}(\left|S_{2}^{(5)}\right\rangle)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ⟩ ) = caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 6 ) end_POSTSUPERSCRIPT ⟩ ) ≠ caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ⟩ ). These results are different from those in studying \mathcal{E}caligraphic_E and 𝒩𝒩\mathcal{N}caligraphic_N.

Refer to caption
Figure 8: 3(ρaiso)subscript3subscript𝜌𝑎𝑖𝑠𝑜\mathcal{I}_{3}\left(\rho_{aiso}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) versus p𝑝pitalic_p for eleven (θ𝜃\thetaitalic_θ, ϕitalic-ϕ\phiitalic_ϕ) cases. For p=1𝑝1p=1italic_p = 1, 3subscript3\mathcal{I}_{3}caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT values are 0 0\ 0, 1111, 1.15471.15471.15471.1547, 1.732051.732051.732051.73205, 2222, 2.843992.843992.843992.84399, 2.872932.872932.872932.87293 in sequence. Each line is a straight line.
Refer to caption
Figure 9: Three-dimensional feasibility region with 3(ρaiso)>2subscript3subscript𝜌𝑎𝑖𝑠𝑜2\mathcal{I}_{3}\left(\rho_{aiso}\right)>2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 2 showing Bell nonlocality in (θ,ϕ,p)𝜃italic-ϕ𝑝(\theta,\phi,p)( italic_θ , italic_ϕ , italic_p ) space. The blank region is that satisfying 3(ρaiso)2subscript3subscript𝜌𝑎𝑖𝑠𝑜2\mathcal{I}_{3}\left(\rho_{aiso}\right)\leq 2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≤ 2.

Fig.8 depicts 3(ρaiso)subscript3subscript𝜌𝑎𝑖𝑠𝑜\mathcal{I}_{3}\left(\rho_{aiso}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT )s as functions of p𝑝pitalic_p for eleven (θ,ϕ)𝜃italic-ϕ(\theta,\phi)( italic_θ , italic_ϕ )cases. There are seven lines in this figure. Each line is illustrated as follows:

(bL1) The first line corresponds to the cases of (θ,ϕ)=(π/2,0)𝜃italic-ϕ𝜋20\left(\theta,\phi\right)=(\pi/2,0)( italic_θ , italic_ϕ ) = ( italic_π / 2 , 0 ), (π/2,π/2)𝜋2𝜋2(\pi/2,\pi/2)( italic_π / 2 , italic_π / 2 ), (0,ϕ)0italic-ϕ\left(0,\phi\right)( 0 , italic_ϕ ). It satisfy 3(ρaiso)0subscript3subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{I}_{3}\left(\rho_{aiso}\right)\equiv 0caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≡ 0 for any p[0,1]𝑝01p\in[0,1]italic_p ∈ [ 0 , 1 ].

(bL2) The second line corresponds to the cases of (θ,ϕ)=(π/2,π/6)𝜃italic-ϕ𝜋2𝜋6\left(\theta,\phi\right)=(\pi/2,\pi/6)( italic_θ , italic_ϕ ) = ( italic_π / 2 , italic_π / 6 ), (π/6,π/2)𝜋6𝜋2(\pi/6,\pi/2)( italic_π / 6 , italic_π / 2 ). It is a straight line piecewise satisfy 3(ρaiso)=psubscript3subscript𝜌𝑎𝑖𝑠𝑜𝑝\mathcal{I}_{3}\left(\rho_{aiso}\right)=pcaligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = italic_p in the whole p𝑝pitalic_p range.

(bL3) The third curve corresponds to the cases of (θ,ϕ)=(π/2,π/4)𝜃italic-ϕ𝜋2𝜋4\left(\theta,\phi\right)=(\pi/2,\pi/4)( italic_θ , italic_ϕ ) = ( italic_π / 2 , italic_π / 4 ), (π/4,π/2)𝜋4𝜋2(\pi/4,\pi/2)( italic_π / 4 , italic_π / 2 ). It is a straight line piecewise satisfy 3(ρaiso)=1.1547psubscript3subscript𝜌𝑎𝑖𝑠𝑜1.1547𝑝\mathcal{I}_{3}\left(\rho_{aiso}\right)=1.1547pcaligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 1.1547 italic_p in the whole p𝑝pitalic_p range.

(bL4) The fourth line corresponds to the cases of (θ,ϕ)=(π/6,0)𝜃italic-ϕ𝜋60\left(\theta,\phi\right)=(\pi/6,0)( italic_θ , italic_ϕ ) = ( italic_π / 6 , 0 ). It is a straight line piecewise satisfy 3(ρaiso)=1.73205psubscript3subscript𝜌𝑎𝑖𝑠𝑜1.73205𝑝\mathcal{I}_{3}\left(\rho_{aiso}\right)=1.73205pcaligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 1.73205 italic_p in the whole p𝑝pitalic_p range.

(bL5) The fifth curve corresponds to the cases of (θ,ϕ)=(π/4,0)𝜃italic-ϕ𝜋40\left(\theta,\phi\right)=(\pi/4,0)( italic_θ , italic_ϕ ) = ( italic_π / 4 , 0 ). It is a straight line piecewise satisfy 3(ρaiso)=2psubscript3subscript𝜌𝑎𝑖𝑠𝑜2𝑝\mathcal{I}_{3}\left(\rho_{aiso}\right)=2pcaligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 2 italic_p in the whole p𝑝pitalic_prange.

(bL6) The sixth curve corresponds to the case of (θ,ϕ)=(arccos(1/3),π/6)𝜃italic-ϕ13𝜋6\left(\theta,\phi\right)=(\arccos(1/\sqrt{3}),\pi/6)( italic_θ , italic_ϕ ) = ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 6 ). It is a straight line piecewise satisfy 3(ρaiso)=2.84399psubscript3subscript𝜌𝑎𝑖𝑠𝑜2.84399𝑝\mathcal{I}_{3}\left(\rho_{aiso}\right)=2.84399pcaligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 2.84399 italic_p in the whole p𝑝pitalic_p range.

(bL7) The seventh curve corresponds to the case of (θ,ϕ)=(arccos(1/3),π/4)𝜃italic-ϕ13𝜋4\left(\theta,\phi\right)=(\arccos(1/\sqrt{3}),\pi/4)( italic_θ , italic_ϕ ) = ( roman_arccos ( 1 / square-root start_ARG 3 end_ARG ) , italic_π / 4 ). It is a straight line piecewise satisfy 3(ρaiso)=2.87293psubscript3subscript𝜌𝑎𝑖𝑠𝑜2.87293𝑝\mathcal{I}_{3}\left(\rho_{aiso}\right)=2.87293pcaligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = 2.87293 italic_p in the whole p𝑝pitalic_p range.

It is worth noting that we have 3(ρaiso)=p3(|ψ(θ,ϕ))subscript3subscript𝜌𝑎𝑖𝑠𝑜𝑝subscript3ketsubscript𝜓𝜃italic-ϕ\mathcal{I}_{3}\left(\rho_{aiso}\right)=p\mathcal{I}_{3}\left(\left|\psi_{% \left(\theta,\phi\right)}\right\rangle\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = italic_p caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) for arbitrarily determined (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) case. That is, 3(ρaiso)subscript3subscript𝜌𝑎𝑖𝑠𝑜\mathcal{I}_{3}\left(\rho_{aiso}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) is a linear function of p𝑝pitalic_p ([0,1]absent01\in[0,1]∈ [ 0 , 1 ]) with slope value 3(|ψ(θ,ϕ))subscript3ketsubscript𝜓𝜃italic-ϕ\mathcal{I}_{3}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ). Interestingly, we can also draw the conclusion 3(ρaiso)=p3(|ψ(θ,ϕ))+(1p)3(ρnoise)subscript3subscript𝜌𝑎𝑖𝑠𝑜𝑝subscript3ketsubscript𝜓𝜃italic-ϕ1𝑝subscript3subscript𝜌𝑛𝑜𝑖𝑠𝑒\mathcal{I}_{3}\left(\rho_{aiso}\right)=p\mathcal{I}_{3}\left(\left|\psi_{% \left(\theta,\phi\right)}\right\rangle\right)+(1-p)\mathcal{I}_{3}\left(\rho_{% noise}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = italic_p caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) + ( 1 - italic_p ) caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ).

Theoretically, Bell nonlocality can be witnessed by observing 3(ρaiso)>2subscript3subscript𝜌𝑎𝑖𝑠𝑜2\mathcal{I}_{3}\left(\rho_{aiso}\right)>2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 2, i.e. the violation of Eq.(22). From above numerical results, we immediately know that there is the possibility of 3(ρaiso)>2subscript3subscript𝜌𝑎𝑖𝑠𝑜2\mathcal{I}_{3}\left(\rho_{aiso}\right)>2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 2 if and only if |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ is the Sn=3 state. In Fig.9, we plot the feasibility regions in (θ,ϕ,p)𝜃italic-ϕ𝑝\left(\theta,\phi,p\right)( italic_θ , italic_ϕ , italic_p ) space showing Bell nonlocality. Only in the range of 0.686141p1less-than-or-similar-to0.686141𝑝10.686141\lesssim p\leq 10.686141 ≲ italic_p ≤ 1, we can choose proper (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) values to satisfy 3(ρaiso)>2subscript3subscript𝜌𝑎𝑖𝑠𝑜2\mathcal{I}_{3}\left(\rho_{aiso}\right)>2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 2. Moreover, the optional (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) region area will decrease as p𝑝pitalic_p decreases until p0.686141𝑝0.686141p\approx 0.686141italic_p ≈ 0.686141. In other words, no matter how you choose (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) if 0p0.6861410𝑝less-than-or-similar-to0.6861410\leq p\lesssim 0.6861410 ≤ italic_p ≲ 0.686141, it is impossible to ensure that this inequality 3(ρaiso)>2subscript3subscript𝜌𝑎𝑖𝑠𝑜2\mathcal{I}_{3}\left(\rho_{aiso}\right)>2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 2 holds true. Here, I would like to remind everyone that 3(ρaiso)subscript3subscript𝜌𝑎𝑖𝑠𝑜\mathcal{I}_{3}\left(\rho_{aiso}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) values may be less than zero for some parameter (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) regions, but 3(ρaiso)subscript3subscript𝜌𝑎𝑖𝑠𝑜\mathcal{I}_{3}\left(\rho_{aiso}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) values are absolutely impossible to be less than 22-2- 2 for any parameter (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) regions.

In addition, we find that the maximum value of 3(ρaiso)subscript3subscript𝜌𝑎𝑖𝑠𝑜\mathcal{I}_{3}\left(\rho_{aiso}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) is 3max=2.91485superscriptsubscript32.91485\mathcal{I}_{3}^{\max}=2.91485caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT = 2.91485, which is positioned at (θ,ϕ,p)(0.906006,0.67002,1)similar-to-or-equals𝜃italic-ϕ𝑝0.9060060.670021\left(\theta,\phi,p\right)\simeq\left(0.906006,0.67002,1\right)\ ( italic_θ , italic_ϕ , italic_p ) ≃ ( 0.906006 , 0.67002 , 1 )or (2.23559,3.81161,1)2.235593.811611\left(2.23559,3.81161,1\right)( 2.23559 , 3.81161 , 1 ). This is an astonishing result for us because of 3max(ρaiso)3max(ρiso)=3(|Φ3+)2.87293superscriptsubscript3subscript𝜌𝑎𝑖𝑠𝑜superscriptsubscript3subscript𝜌𝑖𝑠𝑜subscript3ketsuperscriptsubscriptΦ3similar-to-or-equals2.87293\mathcal{I}_{3}^{\max}\left(\rho_{aiso}\right)\geq\mathcal{I}_{3}^{\max}\left(% \rho_{iso}\right)=\mathcal{I}_{3}(\left|\Phi_{3}^{+}\right\rangle)\simeq 2.87293caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≥ caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_i italic_s italic_o end_POSTSUBSCRIPT ) = caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ ) ≃ 2.87293. That is to say, the maximally entangled state is not the maximally Bell-nonlocality state. In fact, there are a lot of ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPTs, whose 3subscript3\mathcal{I}_{3}caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT values are greater than 3(|Φ3+)subscript3ketsuperscriptsubscriptΦ3\mathcal{I}_{3}(\left|\Phi_{3}^{+}\right\rangle)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ ). As shown in Fig.10, two feasibility regions satisfying 3(ρaiso)>3(|Φ3+)subscript3subscript𝜌𝑎𝑖𝑠𝑜subscript3ketsuperscriptsubscriptΦ3\mathcal{I}_{3}\left(\rho_{aiso}\right)>\mathcal{I}_{3}(\left|\Phi_{3}^{+}% \right\rangle)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩ ) are distributed in the interval of 0.985618p1less-than-or-similar-to0.985618𝑝10.985618\lesssim p\leq 10.985618 ≲ italic_p ≤ 1, together with proper (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) values satisfying 0.8112θ1.002less-than-or-similar-to0.8112𝜃less-than-or-similar-to1.0020.8112\lesssim\theta\lesssim 1.0020.8112 ≲ italic_θ ≲ 1.002, 0.5388ϕ0.7996less-than-or-similar-to0.5388italic-ϕless-than-or-similar-to0.79960.5388\lesssim\phi\lesssim 0.79960.5388 ≲ italic_ϕ ≲ 0.7996, or 2.141θ2.330less-than-or-similar-to2.141𝜃less-than-or-similar-to2.3302.141\lesssim\theta\lesssim 2.3302.141 ≲ italic_θ ≲ 2.330, 3.681ϕ3.941less-than-or-similar-to3.681italic-ϕless-than-or-similar-to3.9413.681\lesssim\phi\lesssim 3.9413.681 ≲ italic_ϕ ≲ 3.941.

Refer to caption
Refer to caption
Figure 10: Two feasibility regions satisfying 3(ρaiso)>2.87293subscript3subscript𝜌𝑎𝑖𝑠𝑜2.87293\mathcal{I}_{3}\left(\rho_{aiso}\right)>2.87293caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) > 2.87293 in (θ,ϕ,p)𝜃italic-ϕ𝑝(\theta,\phi,p)( italic_θ , italic_ϕ , italic_p ) space.

VI Conclusions and discussions

In summary, we introduced the AITTSs, and then explored their properties, including entanglement (see index \mathcal{E}caligraphic_E), Wigner negativity (see index 𝒩𝒩\mathcal{N}caligraphic_N) and Bell nonlocality (see index 3subscript3\mathcal{I}_{3}caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT). For all these properties, we tried our best to obtain their respective analytical and numerical results.

As one extremal case of ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT with p=0𝑝0p=0italic_p = 0, we always had (ρnoise)0subscript𝜌𝑛𝑜𝑖𝑠𝑒0\mathcal{E}\left(\rho_{noise}\right)\equiv 0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) ≡ 0, 𝒩(ρnoise)0𝒩subscript𝜌𝑛𝑜𝑖𝑠𝑒0\mathcal{N}\left(\rho_{noise}\right)\equiv 0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) ≡ 0, and 3(ρnoise)0subscript3subscript𝜌𝑛𝑜𝑖𝑠𝑒0\mathcal{I}_{3}\left(\rho_{noise}\right)\equiv 0caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) ≡ 0. As another extremal case of ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT with p=1𝑝1p=1italic_p = 1, we know that (|ψ(θ,ϕ))ketsubscript𝜓𝜃italic-ϕ\mathcal{E}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_E ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ), 𝒩(|ψ(θ,ϕ))𝒩ketsubscript𝜓𝜃italic-ϕ\mathcal{N}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_N ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ), and 3(|ψ(θ,ϕ))subscript3ketsubscript𝜓𝜃italic-ϕ\mathcal{I}_{3}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) are determined by |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ in itself. So, in the end of this paper, we specialize in analyzing the influence of parameters (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) on these three properties of |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩. Figure 11 depicts the contours for (|ψ(θ,ϕ))ketsubscript𝜓𝜃italic-ϕ\mathcal{E}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_E ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ), 𝒩(|ψ(θ,ϕ))𝒩ketsubscript𝜓𝜃italic-ϕ\mathcal{N}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_N ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ), and 3(|ψ(θ,ϕ))subscript3ketsubscript𝜓𝜃italic-ϕ\mathcal{I}_{3}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) in (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) plains. From Fig.11(a), we see that (|ψ(θ,ϕ))ketsubscript𝜓𝜃italic-ϕ\mathcal{E}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_E ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) is a periodic function of θ𝜃\thetaitalic_θ with period π𝜋\piitalic_π and a periodic function of ϕitalic-ϕ\phiitalic_ϕ with period π/4𝜋4\pi/4italic_π / 4. Compared with (|ψ(θ,ϕ))ketsubscript𝜓𝜃italic-ϕ\mathcal{E}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_E ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ), the periodic features of 𝒩(|ψ(θ,ϕ))𝒩ketsubscript𝜓𝜃italic-ϕ\mathcal{N}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_N ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) are gone, as shown in Fig.11(b). By observing 3(|ψ(θ,ϕ))subscript3ketsubscript𝜓𝜃italic-ϕ\mathcal{I}_{3}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) in Fig.11(c), we find that 3(|ψ(θ,ϕ))subscript3ketsubscript𝜓𝜃italic-ϕ\mathcal{I}_{3}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) values are in the range of [2,2.91485]22.91485[-2,2.91485][ - 2 , 2.91485 ]. Specially, when (θ,ϕ,p)=(π/4,π,1)𝜃italic-ϕ𝑝𝜋4𝜋1\left(\theta,\phi,p\right)=\left(\pi/4,\pi,1\right)( italic_θ , italic_ϕ , italic_p ) = ( italic_π / 4 , italic_π , 1 ), the minimal 3min=2superscriptsubscript32\mathcal{I}_{3}^{\min}=-2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_min end_POSTSUPERSCRIPT = - 2 is found, corresponding to |ψ(θ,ϕ)=12(|22|00)ketsubscript𝜓𝜃italic-ϕ12ket22ket00\left|\psi_{\left(\theta,\phi\right)}\right\rangle=\frac{1}{\sqrt{2}}(\left|22% \right\rangle-\left|00\right\rangle)| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( | 22 ⟩ - | 00 ⟩ ).

Refer to caption
Figure 11: Contourplots of (a) (|ψ(θ,ϕ))ketsubscript𝜓𝜃italic-ϕ\mathcal{E}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_E ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ), (b) 𝒩(|ψ(θ,ϕ))𝒩ketsubscript𝜓𝜃italic-ϕ\mathcal{N}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_N ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ), and (c) 3(|ψ(θ,ϕ))subscript3ketsubscript𝜓𝜃italic-ϕ\mathcal{I}_{3}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) in (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) plain space. It is necessary to remind in sub-figure (c) that (i) the red dashed lines correspond to 3(|ψ(θ,ϕ))=2subscript3ketsubscript𝜓𝜃italic-ϕ2\mathcal{I}_{3}\left(\left|\psi_{\left(\theta,\phi\right)}\right\rangle\right)=2caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) = 2; (ii) For some (θ,ϕ)𝜃italic-ϕ\left(\theta,\phi\right)( italic_θ , italic_ϕ ) regions, 3subscript3\mathcal{I}_{3}caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT values are less than 0.

If |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ was the Sn=1 state, then we always have (ρaiso)0subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{E}\left(\rho_{aiso}\right)\equiv 0caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≡ 0, 𝒩(ρaiso)0𝒩subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{N}\left(\rho_{aiso}\right)\equiv 0caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≡ 0, and 3(ρaiso)0subscript3subscript𝜌𝑎𝑖𝑠𝑜0\mathcal{I}_{3}\left(\rho_{aiso}\right)\equiv 0caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) ≡ 0. While |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ was not the Sn=1 states, then we found that (i) (ρaiso)subscript𝜌𝑎𝑖𝑠𝑜\mathcal{E}\left(\rho_{aiso}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) was not a linear function of p𝑝pitalic_p; (ii) 𝒩(ρaiso)𝒩subscript𝜌𝑎𝑖𝑠𝑜\mathcal{N}\left(\rho_{aiso}\right)caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) was also not a linear function of p𝑝pitalic_p; (iii) but, 3(ρaiso)subscript3subscript𝜌𝑎𝑖𝑠𝑜\mathcal{I}_{3}\left(\rho_{aiso}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) was a linear function of p𝑝pitalic_p. Although ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT was the mixture between |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ and ρnoisesubscript𝜌𝑛𝑜𝑖𝑠𝑒\rho_{noise}italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT (see Eq.(2)), we concluded that (i) The equality of (ρaiso)=p(|ψ(θ,ϕ))+(1p)(ρnoise)subscript𝜌𝑎𝑖𝑠𝑜𝑝ketsubscript𝜓𝜃italic-ϕ1𝑝subscript𝜌𝑛𝑜𝑖𝑠𝑒\mathcal{E}\left(\rho_{aiso}\right)=p\mathcal{E}\left(\left|\psi_{\left(\theta% ,\phi\right)}\right\rangle\right)+(1-p)\mathcal{E}\left(\rho_{noise}\right)caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = italic_p caligraphic_E ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) + ( 1 - italic_p ) caligraphic_E ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) may not necessarily hold true; (ii) The equality of 𝒩(ρaiso)=p𝒩(|ψ(θ,ϕ))+(1p)𝒩(ρnoise)𝒩subscript𝜌𝑎𝑖𝑠𝑜𝑝𝒩ketsubscript𝜓𝜃italic-ϕ1𝑝𝒩subscript𝜌𝑛𝑜𝑖𝑠𝑒\mathcal{N}\left(\rho_{aiso}\right)=p\mathcal{N}\left(\left|\psi_{\left(\theta% ,\phi\right)}\right\rangle\right)+(1-p)\mathcal{N}\left(\rho_{noise}\right)caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = italic_p caligraphic_N ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) + ( 1 - italic_p ) caligraphic_N ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) may not necessarily hold true; (iii) But the equality of 3(ρaiso)=p3(|ψ(θ,ϕ))+(1p)3(ρnoise)subscript3subscript𝜌𝑎𝑖𝑠𝑜𝑝subscript3ketsubscript𝜓𝜃italic-ϕ1𝑝subscript3subscript𝜌𝑛𝑜𝑖𝑠𝑒\mathcal{I}_{3}\left(\rho_{aiso}\right)=p\mathcal{I}_{3}\left(\left|\psi_{% \left(\theta,\phi\right)}\right\rangle\right)+(1-p)\mathcal{I}_{3}\left(\rho_{% noise}\right)caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT ) = italic_p caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( | italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ ) + ( 1 - italic_p ) caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ρ start_POSTSUBSCRIPT italic_n italic_o italic_i italic_s italic_e end_POSTSUBSCRIPT ) may always hold true.

Finally, we summarize several key results as follows:

(1) There is no decisive relationship between these three properties. If a quantum state has the highest entanglement, its negativity may not necessarily be the highest, and its Bell non-locality may not necessarily be the strongest. This point can be verified from \mathcal{E}caligraphic_E, 𝒩𝒩\mathcal{N}caligraphic_N, and 3subscript3\mathcal{I}_{3}caligraphic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT of state |Φ3+ketsuperscriptsubscriptΦ3\left|\Phi_{3}^{+}\right\rangle| roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ⟩. The maximally entangled state is not the maximally Wigner-negativity state and the maximally Bell-nonlocality state.

(2) A quantum pure state with a larger Schmidt number does not necessarily have a greater Wigner negativity. This point can be verified from 𝒩(|S2(1))>𝒩(|S3(1))𝒩ketsuperscriptsubscript𝑆21𝒩ketsuperscriptsubscript𝑆31\mathcal{N}(\left|S_{2}^{(1)}\right\rangle)>\mathcal{N}(\left|S_{3}^{(1)}% \right\rangle)caligraphic_N ( | italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ) > caligraphic_N ( | italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⟩ ).

(3) It is the effects of the noise that three properties will exhibit only when p𝑝pitalic_p exceeds a certain threshold. This point can be seen from our numerical results. Of course, the optimal properties of ρaisosubscript𝜌𝑎𝑖𝑠𝑜\rho_{aiso}italic_ρ start_POSTSUBSCRIPT italic_a italic_i italic_s italic_o end_POSTSUBSCRIPT are those of |ψ(θ,ϕ)ketsubscript𝜓𝜃italic-ϕ\left|\psi_{\left(\theta,\phi\right)}\right\rangle| italic_ψ start_POSTSUBSCRIPT ( italic_θ , italic_ϕ ) end_POSTSUBSCRIPT ⟩ corresponding to p=1𝑝1p=1italic_p = 1, without the effects of the noise.

Acknowledgements.
This paper was supported by the National Natural Science Foundation of China (Grant No. 12465004).

Appendix

Appendix A: Pauli matrices related with qutrit system

The bases are set as |0=(100)Tket0superscript100𝑇\left|0\right\rangle=\left(\begin{array}[]{ccc}1&0&0\end{array}\right)^{T}| 0 ⟩ = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, |1=(010)Tket1superscript010𝑇\left|1\right\rangle=\left(\begin{array}[]{ccc}0&1&0\end{array}\right)^{T}| 1 ⟩ = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, |2=(001)Tket2superscript001𝑇\left|2\right\rangle=\left(\begin{array}[]{ccc}0&0&1\end{array}\right)^{T}| 2 ⟩ = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, 0|=(100)bra0100\left\langle 0\right|=\left(\begin{array}[]{ccc}1&0&0\end{array}\right)⟨ 0 | = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ), 1|=(010)bra1010\left\langle 1\right|=\left(\begin{array}[]{ccc}0&1&0\end{array}\right)⟨ 1 | = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ), and 2|=(001)bra2001\left\langle 2\right|=\left(\begin{array}[]{ccc}0&0&1\end{array}\right)⟨ 2 | = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ), for qutrit system with dimensionality d=3𝑑3d=3italic_d = 3 and ω=ei2π3𝜔superscript𝑒𝑖2𝜋3\omega=e^{i\frac{2\pi}{3}}italic_ω = italic_e start_POSTSUPERSCRIPT italic_i divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT. Related Pauli matrices are created via repeated matrix multiplication XxZzsuperscript𝑋𝑥superscript𝑍𝑧X^{x}Z^{z}italic_X start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT (x𝑥xitalic_x, z3𝑧subscript3z\in\mathbb{Z}_{3}italic_z ∈ blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT)56 as

X0Z0superscript𝑋0superscript𝑍0\displaystyle X^{0}Z^{0}italic_X start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT =(100010001),X0Z1=(1000ω000ω2),formulae-sequenceabsent100010001superscript𝑋0superscript𝑍11000𝜔000superscript𝜔2\displaystyle=\left(\begin{array}[]{ccc}1&0&0\\ 0&1&0\\ 0&0&1\end{array}\right),X^{0}Z^{1}=\left(\begin{array}[]{ccc}1&0&0\\ 0&\omega&0\\ 0&0&\omega^{2}\end{array}\right),= ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_X start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ω end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) , (A.1)
X0Z2superscript𝑋0superscript𝑍2\displaystyle X^{0}Z^{2}italic_X start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT =(1000ω2000ω),X1Z0=(001100010),formulae-sequenceabsent1000superscript𝜔2000𝜔superscript𝑋1superscript𝑍0001100010\displaystyle=\left(\begin{array}[]{ccc}1&0&0\\ 0&\omega^{2}&0\\ 0&0&\omega\end{array}\right),X^{1}Z^{0}=\left(\begin{array}[]{ccc}0&0&1\\ 1&0&0\\ 0&1&0\end{array}\right),= ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ω end_CELL end_ROW end_ARRAY ) , italic_X start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , (A.2)
X1Z1superscript𝑋1superscript𝑍1\displaystyle X^{1}Z^{1}italic_X start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT =(00ω21000ω0),X1Z2=(00ω1000ω20),formulae-sequenceabsent00superscript𝜔21000𝜔0superscript𝑋1superscript𝑍200𝜔1000superscript𝜔20\displaystyle=\left(\begin{array}[]{ccc}0&0&\omega^{2}\\ 1&0&0\\ 0&\omega&0\end{array}\right),X^{1}Z^{2}=\left(\begin{array}[]{ccc}0&0&\omega\\ 1&0&0\\ 0&\omega^{2}&0\end{array}\right),= ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ω end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , italic_X start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ω end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , (A.3)
X2Z0superscript𝑋2superscript𝑍0\displaystyle X^{2}Z^{0}italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT =(010001100),X2Z1=(0ω000ω2100),formulae-sequenceabsent010001100superscript𝑋2superscript𝑍10𝜔000superscript𝜔2100\displaystyle=\left(\begin{array}[]{ccc}0&1&0\\ 0&0&1\\ 1&0&0\end{array}\right),X^{2}Z^{1}=\left(\begin{array}[]{ccc}0&\omega&0\\ 0&0&\omega^{2}\\ 1&0&0\end{array}\right),= ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL italic_ω end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , (A.4)
X2Z2superscript𝑋2superscript𝑍2\displaystyle X^{2}Z^{2}italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT =(0ω2000ω100).absent0superscript𝜔2000𝜔100\displaystyle=\left(\begin{array}[]{ccc}0&\omega^{2}&0\\ 0&0&\omega\\ 1&0&0\end{array}\right).= ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ω end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) . (A.5)
According to Eq.(8) and using above matrices, we can obtain the matrix in Eq.(9).

Appendix B: Matrices for ΠA1(j)superscriptsubscriptΠsubscript𝐴1𝑗\Pi_{A_{1}}^{\left(j\right)}roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_j ) end_POSTSUPERSCRIPT, ΠA2(k)superscriptsubscriptΠsubscript𝐴2𝑘\Pi_{A_{2}}^{\left(k\right)}roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT, ΠB1(l)superscriptsubscriptΠsubscript𝐵1𝑙\Pi_{B_{1}}^{\left(l\right)}roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_l ) end_POSTSUPERSCRIPT, and ΠB2(m)superscriptsubscriptΠsubscript𝐵2𝑚\Pi_{B_{2}}^{\left(m\right)}roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT

(1) Matrix of ΠA1(j)superscriptsubscriptΠsubscript𝐴1𝑗\Pi_{A_{1}}^{\left(j\right)}roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_j ) end_POSTSUPERSCRIPT is

ΠA1(j)=13(1ωjα1ω2j2α1ωj+α11ωjα1ω2j+2α1ωj+α11),superscriptsubscriptΠsubscript𝐴1𝑗131superscript𝜔𝑗subscript𝛼1superscript𝜔2𝑗2subscript𝛼1superscript𝜔𝑗subscript𝛼11superscript𝜔𝑗subscript𝛼1superscript𝜔2𝑗2subscript𝛼1superscript𝜔𝑗subscript𝛼11\Pi_{A_{1}}^{\left(j\right)}=\frac{1}{3}\allowbreak\left(\begin{array}[]{ccc}1% &\omega^{-j-\alpha_{1}}&\omega^{-2j-2\alpha_{1}}\\ \omega^{j+\alpha_{1}}&1&\omega^{-j-\alpha_{1}}\\ \omega^{2j+2\alpha_{1}}&\omega^{j+\alpha_{1}}&1\end{array}\right),roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_j ) end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 3 end_ARG ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT - italic_j - italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT - 2 italic_j - 2 italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT italic_j + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT - italic_j - italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_j + 2 italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_j + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , (B.1)

(2) Matrix of ΠA2(k)superscriptsubscriptΠsubscript𝐴2𝑘\Pi_{A_{2}}^{\left(k\right)}roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT is

ΠA2(k)=13(1ωkα2ω2k2α2ωk+α21ωkα2ω2k+2α2ωk+α21),superscriptsubscriptΠsubscript𝐴2𝑘131superscript𝜔𝑘subscript𝛼2superscript𝜔2𝑘2subscript𝛼2superscript𝜔𝑘subscript𝛼21superscript𝜔𝑘subscript𝛼2superscript𝜔2𝑘2subscript𝛼2superscript𝜔𝑘subscript𝛼21\Pi_{A_{2}}^{\left(k\right)}=\frac{1}{3}\allowbreak\left(\begin{array}[]{ccc}1% &\omega^{-k-\alpha_{2}}&\omega^{-2k-2\alpha_{2}}\\ \omega^{k+\alpha_{2}}&1&\omega^{-k-\alpha_{2}}\\ \omega^{2k+2\alpha_{2}}&\omega^{k+\alpha_{2}}&1\end{array}\right),roman_Π start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 3 end_ARG ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT - italic_k - italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT - 2 italic_k - 2 italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT italic_k + italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT - italic_k - italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_k + 2 italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_k + italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , (B.2)

(3) Matrix of ΠB1(l)superscriptsubscriptΠsubscript𝐵1𝑙\Pi_{B_{1}}^{\left(l\right)}roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_l ) end_POSTSUPERSCRIPT is

ΠB1(l)=13(1ωlβ1ω2l2β1ωβ1l1ωlβ1ω2β12lωβ1l1),superscriptsubscriptΠsubscript𝐵1𝑙131superscript𝜔𝑙subscript𝛽1superscript𝜔2𝑙2subscript𝛽1superscript𝜔subscript𝛽1𝑙1superscript𝜔𝑙subscript𝛽1superscript𝜔2subscript𝛽12𝑙superscript𝜔subscript𝛽1𝑙1\Pi_{B_{1}}^{\left(l\right)}=\frac{1}{3}\left(\begin{array}[]{ccc}1&\omega^{l-% \beta_{1}}&\omega^{2l-2\beta_{1}}\\ \omega^{\beta_{1}-l}&1&\omega^{l-\beta_{1}}\\ \omega^{2\beta_{1}-2l}&\omega^{\beta_{1}-l}&1\end{array}\right),roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_l ) end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 3 end_ARG ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_l - italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_l - 2 italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_l end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_l - italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 2 italic_l end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_l end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , (B.3)

(4) Matrix of ΠB2(m)superscriptsubscriptΠsubscript𝐵2𝑚\Pi_{B_{2}}^{\left(m\right)}roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT is

ΠB2(m)=13(1ωmβ2ω2m2β2ωβ2m1ωmβ2ω2β22mωβ2m1).superscriptsubscriptΠsubscript𝐵2𝑚131superscript𝜔𝑚subscript𝛽2superscript𝜔2𝑚2subscript𝛽2superscript𝜔subscript𝛽2𝑚1superscript𝜔𝑚subscript𝛽2superscript𝜔2subscript𝛽22𝑚superscript𝜔subscript𝛽2𝑚1\Pi_{B_{2}}^{\left(m\right)}=\frac{1}{3}\left(\begin{array}[]{ccc}1&\omega^{m-% \beta_{2}}&\omega^{2m-2\beta_{2}}\\ \omega^{\beta_{2}-m}&1&\omega^{m-\beta_{2}}\\ \omega^{2\beta_{2}-2m}&\omega^{\beta_{2}-m}&1\end{array}\right).roman_Π start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 3 end_ARG ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_m - italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_m - 2 italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_m end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_m - italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUPERSCRIPT 2 italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 2 italic_m end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_m end_POSTSUPERSCRIPT end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) . (B.4)
Appendix C: Details of each term in Eq.(22)

(1) For P(A1=B1)𝑃subscript𝐴1subscript𝐵1P\left(A_{1}=B_{1}\right)italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), we have

P(A1=B1)𝑃subscript𝐴1subscript𝐵1\displaystyle P\left(A_{1}=B_{1}\right)italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) =P(A1=0,B1=0)absent𝑃formulae-sequencesubscript𝐴10subscript𝐵10\displaystyle=P\left(A_{1}=0,B_{1}=0\right)= italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 )
+P(A1=1,B1=1)𝑃formulae-sequencesubscript𝐴11subscript𝐵11\displaystyle+P\left(A_{1}=1,B_{1}=1\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 )
+P(A1=2,B1=2),𝑃formulae-sequencesubscript𝐴12subscript𝐵12\displaystyle+P\left(A_{1}=2,B_{1}=2\right),+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 ) , (C.1)

(2) For P(B1=A2+1)𝑃subscript𝐵1subscript𝐴21P\left(B_{1}=A_{2}+1\right)italic_P ( italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 ), we have

P(B1=A2+1)𝑃subscript𝐵1subscript𝐴21\displaystyle P\left(B_{1}=A_{2}+1\right)italic_P ( italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 ) =P(A2=0,B1=1)absent𝑃formulae-sequencesubscript𝐴20subscript𝐵11\displaystyle=P\left(A_{2}=0,B_{1}=1\right)= italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 )
+P(A2=1,B1=2)𝑃formulae-sequencesubscript𝐴21subscript𝐵12\displaystyle+P\left(A_{2}=1,B_{1}=2\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 )
+P(A2=2,B1=0),𝑃formulae-sequencesubscript𝐴22subscript𝐵10\displaystyle+P\left(A_{2}=2,B_{1}=0\right),+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 ) , (C.2)

(3) For P(A2=B2)𝑃subscript𝐴2subscript𝐵2P\left(A_{2}=B_{2}\right)italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), we have

P(A2=B2)𝑃subscript𝐴2subscript𝐵2\displaystyle P\left(A_{2}=B_{2}\right)italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) =P(A2=0,B2=0)absent𝑃formulae-sequencesubscript𝐴20subscript𝐵20\displaystyle=P\left(A_{2}=0,B_{2}=0\right)= italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 )
+P(A2=1,B2=1)𝑃formulae-sequencesubscript𝐴21subscript𝐵21\displaystyle+P\left(A_{2}=1,B_{2}=1\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 )
+P(A2=2,B2=2),𝑃formulae-sequencesubscript𝐴22subscript𝐵22\displaystyle+P\left(A_{2}=2,B_{2}=2\right),+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 ) , (C.3)

(4) For P(B2=A1)𝑃subscript𝐵2subscript𝐴1P\left(B_{2}=A_{1}\right)italic_P ( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), we have

P(B2=A1)𝑃subscript𝐵2subscript𝐴1\displaystyle P\left(B_{2}=A_{1}\right)italic_P ( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) =P(A1=0,B2=0)absent𝑃formulae-sequencesubscript𝐴10subscript𝐵20\displaystyle=P\left(A_{1}=0,B_{2}=0\right)= italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 )
+P(A1=1,B2=1)𝑃formulae-sequencesubscript𝐴11subscript𝐵21\displaystyle+P\left(A_{1}=1,B_{2}=1\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 )
+P(A1=2,B2=2),𝑃formulae-sequencesubscript𝐴12subscript𝐵22\displaystyle+P\left(A_{1}=2,B_{2}=2\right),+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 ) , (C.4)

(5) For P(A1=B11)𝑃subscript𝐴1subscript𝐵11P\left(A_{1}=B_{1}-1\right)italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 ), we have

P(A1=B11)𝑃subscript𝐴1subscript𝐵11\displaystyle P\left(A_{1}=B_{1}-1\right)italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 ) =P(A1=2,B1=0)absent𝑃formulae-sequencesubscript𝐴12subscript𝐵10\displaystyle=P\left(A_{1}=2,B_{1}=0\right)= italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 )
+P(A1=0,B1=1)𝑃formulae-sequencesubscript𝐴10subscript𝐵11\displaystyle+P\left(A_{1}=0,B_{1}=1\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 )
+P(A1=1,B1=2),𝑃formulae-sequencesubscript𝐴11subscript𝐵12\displaystyle+P\left(A_{1}=1,B_{1}=2\right),+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 ) , (C.5)

(6) For P(B1=A2)𝑃subscript𝐵1subscript𝐴2P\left(B_{1}=A_{2}\right)italic_P ( italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), we have

P(B1=A2)𝑃subscript𝐵1subscript𝐴2\displaystyle P\left(B_{1}=A_{2}\right)italic_P ( italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) =P(A2=0,B1=0)absent𝑃formulae-sequencesubscript𝐴20subscript𝐵10\displaystyle=P\left(A_{2}=0,B_{1}=0\right)= italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 )
+P(A2=1,B1=1)𝑃formulae-sequencesubscript𝐴21subscript𝐵11\displaystyle+P\left(A_{2}=1,B_{1}=1\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 )
+P(A2=2,B1=2),𝑃formulae-sequencesubscript𝐴22subscript𝐵12\displaystyle+P\left(A_{2}=2,B_{1}=2\right),+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 ) , (C.6)

(7) For P(A2=B21)𝑃subscript𝐴2subscript𝐵21P\left(A_{2}=B_{2}-1\right)italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 ), we have

P(A2=B21)𝑃subscript𝐴2subscript𝐵21\displaystyle P\left(A_{2}=B_{2}-1\right)italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 ) =P(A2=2,B2=0)absent𝑃formulae-sequencesubscript𝐴22subscript𝐵20\displaystyle=P\left(A_{2}=2,B_{2}=0\right)= italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 )
+P(A2=0,B2=1)𝑃formulae-sequencesubscript𝐴20subscript𝐵21\displaystyle+P\left(A_{2}=0,B_{2}=1\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 )
+P(A2=1,B2=2),𝑃formulae-sequencesubscript𝐴21subscript𝐵22\displaystyle+P\left(A_{2}=1,B_{2}=2\right),+ italic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 ) , (C.7)

(8) For P(B2=A11)𝑃subscript𝐵2subscript𝐴11P\left(B_{2}=A_{1}-1\right)italic_P ( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 ), we have

P(B2=A11)𝑃subscript𝐵2subscript𝐴11\displaystyle P\left(B_{2}=A_{1}-1\right)italic_P ( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 ) =P(A1=0,B2=2)absent𝑃formulae-sequencesubscript𝐴10subscript𝐵22\displaystyle=P\left(A_{1}=0,B_{2}=2\right)= italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 2 )
+P(A1=1,B2=0)𝑃formulae-sequencesubscript𝐴11subscript𝐵20\displaystyle+P\left(A_{1}=1,B_{2}=0\right)+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 )
+P(A1=2,B2=1).𝑃formulae-sequencesubscript𝐴12subscript𝐵21\displaystyle+P\left(A_{1}=2,B_{2}=1\right).+ italic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 2 , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 ) . (C.8)

References

  • (1) E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
  • (2) U. Chabaud and M. Walschaers, Resources for Bosonic Quantum Computational Advantage, Phys. Rev. Lett. 130, 090602 (2023).
  • (3) A. Mari, K. Kieling, B. Melholt Nielsen, E. S. Polzik, and J. Eisert, Directly Estimating Nonclassicality, Phys. Rev. Lett. 106, 010403 (2011).
  • (4) C. Gehrke, J. Sperling, and W. Vogel, Quantification of nonclassicality, Phys. Rev. A 86, 052118 (2012).
  • (5) N. Killoran, F. E. S. Steinhoff, and M. B. Plenio, Converting Nonclassicality into Entanglement, Phys. Rev. Lett. 116, 080402 (2016).
  • (6) S. Ryl, J. Sperling, E. Agudelo, M. Mraz, S. Kohnke, B. Hage, and W. Vogel, Unified nonclassicality criteria, Phys. Rev. A 92, 011801(R) (2015).
  • (7) B. Kuhn and W. Vogel, Quantum non-Gaussianity and quantification of nonclassicality, Phys. Rev. A 97, 053823 (2018).
  • (8) Q. Zhuang, P. W. Shor, and J. H. Shapiro, Resource theory of non-Gaussian operations, Phys. Rev. A 97, 052317 (2018).
  • (9) F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Ferraro, Resource theory of quantum non-Gaussianity and Wigner negativity, Phys. Rev. A 98, 052350 (2018).
  • (10) R. Takagi and Q. Zhuang, Convex resource theory of non-Gaussianity, Phys. Rev. A 97, 062337 (2018).
  • (11) Z. S. Zhang, et al., Entanglement-based quantum information technology: a tutorial, Adv. Opt. Photon. 16, 60-162 (2024).
  • (12) N. Friis, G. Vitagliano, M. Malik, and M. Huber, Entanglement certification from theory to experiment, Nat. Rev. Phys. 1, 72-87 (2019).
  • (13) M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nat. Rev. Phys. 2, 365-381 (2020).
  • (14) Y. Fan, C. Jia, and L. Qiu, Quantum steering as resource of quantum teleportation, Phys. Rev. A 106, 012433 (2022).
  • (15) R. Uola, A.C.S. Costa, H. C. Nguyen, and O. Guhne, Quantum steering, Rev. Mod. Phys. 92, 015001 (2020).
  • (16) R. Gallego and L. Aolita, Resource Theory of Steering, Phys. Rev. X 5, 041008 (2015).
  • (17) C. Vieira, R. Ramanathan and A. Cabello, Test of the physical significance of Bell non-locality, Nature Communications 16, 4390 (2025).
  • (18) A. Tavakoli, A. Pozas-Kerstjens, M. X. Luo, M. O. Renou, Bell nonlocality in networks, Rep. Prog. Phys. 85, 056001 (2022).
  • (19) U. Chabaud, P. E. Emeriau, and F. Grosshans, Witnessing Wigner Negativity, Quantum 5, 471 (2021).
  • (20) V. Veitch, C. Ferrie, D. Gross and J. Emerson, Negative quasi-probability as a resource for quantum computation, New J. Phys. 14, 113011 (2012).
  • (21) C. Budroni, A. Cabello, O. Guhne, M. Kleinmann, and J. Larsson, Kochen-Specker contextuality, Rev. Mod. Phys. 94, 045007 (2022).
  • (22) F. Shahandeh Contextuality of General Probabilistic Theories, PRX Quantum 2, 010330 (2021).
  • (23) A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, P. Joshi, W. Klobus, and A. Wojcik, Quantifying Contextuality, Phys. Rev. Lett. 112, 120401 (2014).
  • (24) R. I. Booth, U. Chabaud, and P. E. Emeriau, Contextuality and Wigner Negativity Are Equivalent for Continuous-Variable Quantum Measurements, Phys. Rev. Lett. 129, 230401 (2022)
  • (25) N. Delfosse, P. A. Guerin, J. Bian, and R. Raussendorf, Wigner Function Negativity and Contextuality in Quantum Computation on Rebits, Phys. Rev. X 5, 021003 (2015).
  • (26) R. Raussendorf, D. E. Browne, N. Delfosse, C. Okay, and J. Bermejo-Vega, Contextuality and Wigner-function negativity in qubit quantum computation, Phys. Rev. A 95, 052334 (2017).
  • (27) M. Walschaers, C. Fabre, V. Parigi, and N. Treps, Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States, Phys. Rev. Lett. 119, 183601 (2017).
  • (28) A. Cabello, Converting Contextuality into Nonlocality, Phys. Rev. Lett. 127, 070401 (2021).
  • (29) K. Svozil, Converting nonlocality into contextuality, Phys. Rev. A 110, 012215 (2024).
  • (30) M. Plavala and O. Guhne, Contextuality as a Precondition for Quantum Entanglement, Phys. Rev. Lett. 132, 100201 (2024).
  • (31) P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1958.
  • (32) G. Auletta, M. Fortunato, and G. Parisi, Quantum Mechanics, Cambridge University Press, 2009.
  • (33) E. Wigner, On the Quantum Correction for Thermodynamic Equilibrium, Phys. Rev. 40, 749-759 (1932).
  • (34) T. Tilma, M. J. Everitt, J. H. Samson, W. J. Munro, and K. Nemoto, Wigner Functions for Arbitrary Quantum Systems, Phys. Rev. Lett. 117, 180401 (2016).
  • (35) W. P. Schleich, Quantum Optics in Phase Space, Berlin: Wiley-VCH, 2001.
  • (36) U. Chabaud, P. E. Emeriau, and F. Grosshans, Witnessing Wigner Negativity, Quantum 5, 471 (2021).
  • (37) Y. Xiang, S. Liu, J. Guo, Q. Gong, N. Treps, Q. He, and M. Walschaers, Quantification of Wigner Negativity Remotely Generated via Einstein-Podolsky-Rosen Steering, npj Quantum Information 8, 21 (2022).
  • (38) M. Walschaers, On Quantum Steering and Wigner Negativity, Quantum 7, 1038 (2023).
  • (39) A. Kenfack and K. Zyczkowski, Negativity of the Wigner function as an indicator of non-classicality, J. Opt. B: Quantum Semiclassical Opt. 6, 396 (2004).
  • (40) M. Walschaers, Non-gaussian quantum states and where to find them, PRX Quantum 2, 030204 (2021).
  • (41) F. X. Sun, Y. Q. Fang, Q. Y. He, Y. Q. Liu, Generating optical cat states via quantum interference of multi-path free-electron-photons interactions, Sci. Bull. 68, 1366-1371 (2023).
  • (42) D. J. Wineland, Superposition, entanglement, and raising Schrodinger’s cat, Ann. Phys. 525, 739-752 (2013).
  • (43) A. Mari and J. Eisert, Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient, Phys. Rev. Lett. 109, 230503 (2012).
  • (44) U. Chabaud and M. Walschaers, Resources for Bosonic Quantum Computational Advantage, Phys. Rev. Lett. 130 090602 (2023).
  • (45) R. L. Hudson, When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249-252 (1974).
  • (46) F. Soto and P. Claverie, When is the Wigner function of multidimensional systems nonnegative? J. Math. Phys. 24, 97 (1983).
  • (47) D. Gross, Hudson’s theorem for finite-dimensional quantum systems, J. Math. Phys. 47, 122107 (2006).
  • (48) N. Dangniam, Y. G. Han, and H. Zhu, Optimal verification of stabilizer states, Phys. Rev. Research 2, 043323 (2020).
  • (49) N. Koukoulekidis and D. Jennings, Constraints on magic state protocols from the statistical mechanics of Wigner negativity, npj Quantum Information 8, 42 (2022).
  • (50) A. Casaccino, E. F. Galvao, and S. Severini, Extrema of discrete Wigner functions and applications, Phys. Rev. A 78, 022310 (2008).
  • (51) K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, Discrete phase space based on finite fields, Phys. Rev. A 70, 062101 (2004).
  • (52) E. F. Galvao, Discrete Wigner functions and quantum computational speedup, Phys. Rev. A 71, 042302 (2005).
  • (53) L. Kocia and P. Love, Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states, Phys. Rev. A 96, 062134 (2017).
  • (54) W. K. Wootters, Interpreting symplectic linear transformations in a two-qubit phase space, Int. J. Quan. Inf. 22(05), 2440014 (2024).
  • (55) L. K. Antonopoulos, D. G. Lewis, J. Davis, N. Funai, and N. C. Menicucci, Grand Unification of All Discrete Wigner Functions on d×d𝑑𝑑d\times ditalic_d × italic_d Phase Space, arXiv: 2503.09353 (2025).
  • (56) P. Kok and B, W. Lovett, Introduction to Optical Quantum Information Processing, New York: Cambridge Unoversity Press, 2010.
  • (57) M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nat. Rev. Phys. 2, 365-381 (2020).
  • (58) Y. Li, Y. Xiang, X. D. Yu, H. Chau Nguyen, O. Guhne, Q. Y. He, Randomness Certification from Multipartite Quantum Steering for Arbitrary Dimensional Systems, Phys. Rev. Lett. 132, 080201 (2024).
  • (59) H. J. Kimble, The quantum internet, Nature 453 (7198), 1023-1030 (2008).
  • (60) S. Esposito, The quantum internet - the second quantum revolution, Contemp. Phys. 63 (4), 328-328 (2022).
  • (61) S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018).
  • (62) Y. Xiang, F. X. Sun, Q. Y. He, Q. H. Gong, Advances in multipartite and high-dimensional Einstein-Podolsky-Rosen steering, Fundamental Research 1, 99-101 (2021)
  • (63) D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenlowe, High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges, Adv. Quan. Tech. 2, 1900038 (2019
  • (64) N. D’Alessandro, C. R. Carceller, and A. Tavakoli, Semidefinite Relaxations for High-Dimensional Entanglement in the Steering Scenario, Phys. Rev. Lett. 134, 090802 (2025).
  • (65) N. K. H. Li, M. Huber and N. Friis, High-dimensional entanglement witnessed by correlations in arbitrary bases, npj Quantum Information 11, 50 (2025).
  • (66) S. Morelli, M. Huber, and A. Tavakoli, Resource-Efficient High-Dimensional Entanglement Detection via Symmetric Projections, Phys. Rev. Lett. 131, 170201 (2023).
  • (67) Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R. J. Chapman, and A. Peruzzo, High-dimensional entanglement certification, Sci. Rep. 6, 27637 (2016).
  • (68) J. Wang et al., Multidimensional quantum entanglement with large-scale integrated optics, Science 10.1126/science.arr7053 (2018).
  • (69) O. Lib, S. Liu, R. Shekel, Q. He, M. Huber, Y. Bromberg, G. Vitagliano, Experimental certification of high-dimensional entanglement with randomized measurements, arxiv: 2412.04643 (2024).
  • (70) S. H. Liu, M. Fadel, Q. Y. He, M. Huber, G. Vitagliano, Bounding entanglement dimensionality from the covariance matrix, Quantum 8, 1236 (2024).
  • (71) J. Bell, On the Einstein podolsky rosen paradox, Physics, 1, 195-199, (1964).
  • (72) M. Karczewski, G. Scala, A. Mandarino, A. B. Sainz and M. Zukowski, Avenues to generalising Bell inequalities, J. Phys. A: Math. Theor. 55 384011 (2022).
  • (73) J. Kaniewski, I. Supic, J. Tura, F. Baccari, A. Salavrakos, R. Augusiak, Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems, Quantum 3, 198 (2019)
  • (74) O. Veltheim and E. Keski-Vakkuri, Optimizing Quantum Measurements by Partitioning Multisets of Observables, Phys. Rev. Lett. 134, 030801 (2025).
  • (75) M. Pandit, A. Barasiński, I. Marton, T. Vertesi and W. Laskowski, Optimal tests of genuine multipartite nonlocality, New J. Phys. 24 123017 (2022).
  • (76) A. Barasinski, Exploring nonlocal correlations in arbitrarily high-dimensional systems, New J. Phys. 26 113013 (2024).
  • (77) A. Fonseca, A. de Rosier, T. Vertesi, W. Laskowski, and F. Parisio, Survey on the Bell nonlocality of a pair of entangled qudits, Phys. Rev. A 98, 042105 (2018).
  • (78) D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, Bell Inequalities for Arbitrarily High-Dimensional Systems, Phys. Rev. Lett. 88, 040404 (2002).
  • (79) I. Supic and J. Bowles, Self-testing of quantum systems: a review, Quantum 4, 337 (2020)
  • (80) J. Kaniewski, I. Supic, J. Tura, F. Baccari, A. Salavrakos, and R. Augusiak, Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems, Quantum 3, 198 (2019).
  • (81) Z. Cai, C. Ren, T. Feng, X. Zhou, and J. Chen, A review of quantum correlation sharing: The recycling of quantum correlations triggered by quantum measurements, Phys. Rep. 1098 1 (2025).
  • (82) C. Zhang, Y. Li, X. M. Hu, Y. Xiang, C. F. Li, G. C. Guo, J. Tura, Q. Gong, Q. He, and B. H. Liu, Randomness versus Nonlocality in Multiple-Input and Multiple-Output Quantum Scenario, Phys. Rev. Lett. 134 090201 (2025).
  • (83) C. Brukner, M. Zukowski, and A. Zeilinger, Quantum Communication Complexity Protocol with Two Entangled Qutrits, Phys. Rev. Lett. 89, 197901 (2002).
  • (84) M. A. Yurtalan, J. Shi, M. Kononenko, A. Lupascu, and S. Ashhab, Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit, Phys. Rev. Lett. 125, 180504 (2020).
  • (85) F. Turro, I. A. Chernyshev, R. Bhaskar, and M. Illa, Qutrit and qubit circuits for three-flavor collective neutrino oscillations, Phys. Rev. D 111, 043038 (2025).
  • (86) D. Amaro-Alcala, B. C. Sanders, and H. de Guise, Benchmarking of universal qutrit gates, Phys. Rev. A 109, 012621 (2024).
  • (87) A. B. Klimov, R. Guzman, J. C. Retamal, and C. Saavedra, Qutrit quantum computer with trapped ions, Phys. Rev. A 67, 062313 (2003).
  • (88) J. Gruca, W. Laskowski, and M. Zukowski, Nonclassicality of pure two-qutrit entangled states, Phys. Rev. A 85, 022118 (2012).
  • (89) S. Roy, A. Kumari, S. Mal, and A. Sen(De), Robustness of higher-dimensional nonlocality against dual noise and sequential measurements, Phys. Rev. A 109, 062227 (2024).
  • (90) R. Lifshitz, Noise-Robust Self-Testing: Detecting Non-Locality in Noisy Non-Local Inputs, Master’s Thesis, Weizmann Institute of Science, arXiv: 2505.13537 (2025).
  • (91) J. M. Liang, S. Imai, S. Liu, S. M. Fei, O. Guhne, Q. He, Real randomized measurements for analyzing properties of quantum states, arXiv: 2411.06013 (2024).
  • (92) D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, Violations of Local Realism by Two Entangled N-Dimensional Systems Are Stronger than for Two Qubits, Phys. Rev. Lett. 85, 4418 (2000).
  • (93) T. Durt, D. Kaszlikowski, and M. Zukowski, Violations of local realism with quantum systems described by N-dimensional Hilbert spaces up to N=16, Phys. Rev. A 64, 024101 (2001).
  • (94) B. M. Terhal and P. Horodecki, Schmidt number for density matrices, Phys. Rev. A 61, 040301(R) (2000).
  • (95) A. Sanpera, D. Bruβ𝛽\betaitalic_β and M. Lewenstein, Schmidt-number witnesses and bound entanglement, Phys. Rev. A 63, 050301(R) (2001).
  • (96) J. Sperling and W. Vogel, The Schmidt number as a universal entanglement measure, Phys. Scr. 83 045002 (2011)
  • (97) H.-F. Wang and S. M. Fei, Schmidt number criterion via symmetric measurements, arXiv:2505.02297 (2005).
  • (98) G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  • (99) M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: Necessary and sufficient conditions, Phys. Lett. A 223, 1-8 (1996).
  • (100) N. Delfosse, C. Okay, J. Bermejo-Vega, D. E. Browne and R. Raussendorf, Equivalence between contextuality and negativity of the Wigner function for qudits, New J. Phys. 19, 123024 (2017).
  • (101) U. I. Meyer, I. Supic, D. Markham, and F. Grosshans, Qudit Clauser-Horne-Shimony-Holt Inequality and Nonlocality from Wigner Negativity, arXiv: 2405.14367 (2024).