查看 最近的 文章
可积的Teichmüller空间$T_p$对于$p \geq 1$是由Beltrami系数的$p$-可积性定义的。 我们通过条件$\log h'$属于实数$p$-Besov 空间来刻画 $T_p$中的拟对称同胚$h$,在情况$p=1$中应用了某种修改。 这是作为建立双全纯对应关系的论据的一部分,从乘积$\Lambda$到同时统一化的$T_p$的$p$-Weil-Petersson 曲线进入$p$-Besov 空间。 特别是,这证明了$T_p$与实数$p$-Besov 空间之间的实解析等价性。 此外,Weil-Petersson 曲线上 Besov 函数的柯西变换可以通过这个全纯映射$\Lambda$的导数来表示,由此,此情形下的 Calderón 定理是直接的。 这也意味着,Cauchy 变换在$p$-Weil-Petersson 曲线上随着它们在 Bers 坐标中的嵌入而全纯地依赖。
The integrableTeichm\"uller space $T_p$ for $p \geq 1$ is defined by the $p$-integrability of Beltrami coefficients. We characterize a quasisymmetric homeomorphism $h$ in $T_p$ by the condition that $\log h'$ belongs to the real $p$-Besov space, with a certain modification applied in the case $p=1$. This is done as part of the arguments for establishing a biholomorphic correspondence $\Lambda$ from the product of $T_p$ for simultaneous uniformization of $p$-Weil-Petersson curves into the $p$-Besov space. In particular, this proves the real-analytic equivalence between $T_p$ and the real $p$-Besov space. Moreover, the Cauchy transform of Besov functions on Weil-Petersson curves can be expressed by the derivative of this holomorphic map $\Lambda$, and from this, the Calder\'on theorem in this setting is straightforward. It also follows that the Cauchy transforms on $p$-Weil-Petersson curves holomorphically depend on their embeddings as they vary in the Bers coordinates.
均匀$L^\infty$和 Hölder 估计由 Kolodziej 对紧致 Kähler 流形上具有$L^p$体积测度且具有$p>1$的复 Monge-Ampère 方程证明。 另一方面,在奇异 Kähler 变体上建立 Hölder 估计仍然未解决。 在本文中,我们通过开发基于部分$C^0$估计的几何正则化方法,即定量 Kodaira 嵌入,建立了 Kähler 变体上一族复 Monge-Ampère 方程的均匀 Hölder 连续性。 作为应用,我们证明了可平滑 Kähler-Einstein 变体的局部势函数是 Hölder 连续的。
Uniform $L^\infty$ and H\"older estimates were proved by the Kolodziej for complex Monge-Amp\`ere equations on compact K\"ahler manifolds with $L^p$ volume measure with $p>1$. On the other hand, establishing H\"older estimates on singular K\"ahler varieties has remained open. In this paper, we establish uniform H\"older continuity for a family of complex Monge-Amp\`ere equations on K\"ahler varieties, by developing a geometric regularization based on the partial $C^0$ estimate, i.e., quantitive Kodaira embeddings. As an application, we prove that local potentials of smoothable K\"ahler-Einstein varieties are H\"older continuous.
闭单位双圆盘$\overline{\mathbb{D}}^2$被认为是任何一对交换压缩算子$(T_1,T_2)$的谱集。 当每个$T_i$为纯的且缺陷有限时,该对具有一个更小的谱集:位于双圆盘$\mathbb{D}^2$内的一个特殊流形$V$的闭包。 我们找到关于$(T_1,T_2)$的条件,以保证$V$的闭包是一个极小谱集。 此外,我们研究$V$与消去理想$\text{Ann}(T_1,T_2)$在$H^\infty(\mathbb{D}^2)$中的关系。 虽然$V$通常严格大于$\text{Ann}(T_1,T_2)$的零点集,但我们分离出一个自然的约束等距扩张$(S_1,S_2)$的$(T_1,T_2)$,其泰勒谱包含在$V$中,并与所谓的$\text{Ann}(T_1,T_2)$的支持密切相关。 我们还描述了当$\text{Ann}(T_1,T_2)$是在$(S_1^*,S_2^*)$的联合点谱上消失的函数的理想时的情况。
The closed unit bidisc $\overline{\mathbb{D}}^2$ is known to be a spectral set for any pair $(T_1,T_2)$ of commuting contractions. When each $T_i$ is pure and has finite defect, the pair admits a much smaller spectral set: the closure of a distinguished variety $V$ inside the bidisc $\mathbb{D}^2$. We find conditions on $(T_1,T_2)$ that guarantee that the closure of $V$ is a minimal spectral set. In addition, we examine the relationship between $V$ and the annihilating ideal $\text{Ann}(T_1,T_2)$ in $H^\infty(\mathbb{D}^2)$. While $V$ is typically strictly larger than the zero set of $\text{Ann}(T_1,T_2)$, we isolate a natural constrained isometric co-extension $(S_1,S_2)$ of $(T_1,T_2)$ whose Taylor spectrum is contained in $V$ and is closely linked to the so-called support of $\text{Ann}(T_1,T_2)$. We also characterize when $\text{Ann}(T_1,T_2)$ is the ideal of functions vanishing on the joint point spectrum of $(S_1^*,S_2^*)$.
在本文中,我们为Rhaly矩阵(也称为梯田矩阵)在$\ell^2$上的有界性和紧性提供了新的证明。我们完全表征了这些矩阵属于Schatten类$\mathcal{S}^q(\ell^2)$的情况,其中$1<q<\infty$。最后,我们将结果应用于研究加权Dirichlet空间中的Hadamard乘子,回答了Mashreghi-Ransford遗留的问题。
In this article we present new proofs for the boundedness and the compactness on $\ell^2$ of the Rhaly matrices, also known as terraced matrices. We completely characterize when such matrices belong to the Schatten class $\mathcal{S}^q(\ell^2)$, for $1<q<\infty$. Finally, we apply our results to study the Hadamard multipliers in weighted Dirichlet spaces, answering a question left open by Mashreghi-Ransford.
我们证明在对对数终端奇点进行解析时,Kobayashi伪度量是良好行为的。 这回答了Kamenova和Lehn的问题。
We show that the Kobayashi pseudometric is well-behaved under resolution of log-terminal singularities. This answers a question of Kamenova and Lehn.