Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > physics.class-ph

帮助 | 高级搜索

经典物理

  • 新提交
  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年11月05日, 星期三 新的列表

总共 4 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有

新提交 (展示 2 之 2 条目 )

[1] arXiv:2511.01889 [中文pdf, pdf, html, 其他]
标题: 两个狄拉克单极子之间的库仑力
标题: Coulomb force between two Dirac monopoles
Alberto G. Rojo
评论: 被《美国物理学期刊》接受
主题: 经典物理 (physics.class-ph)

由保罗·狄拉克于1931年提出的磁单极子模型长期以来一直是物理学理论研究的兴趣所在,因为它有可能解释电荷的量子化。 尽管对非狄拉克单极子给予了大量关注,但涉及一个称为狄拉克弦的无限细螺线管的狄拉克模型,在单极子之间的相互作用中表现出细微之处。 在本文中,我们表明两个狄拉克单极子之间的力遵循类似库仑的相互作用定律。 这一推导为基本电磁学概念提供了有启发性的练习,并适合本科和早期研究生水平的学生。

The model of magnetic monopoles that was proposed by Paul Dirac in 1931 has long been a subject of theoretical interest in physics because of its potential to explain the quantization of electric charge. While much attention has been given to non-Dirac monopoles, Dirac's model, which involves an infinitely thin solenoid known as a Dirac string, presents subtleties in the interaction between monopoles. In this paper, we show that the force between two Dirac monopoles obeys a Coulomb-like interaction law. This derivation offers an instructive exercise in fundamental electromagnetism concepts and is appropriate for undergraduate and early graduate-level students.

[2] arXiv:2511.02412 [中文pdf, pdf, 其他]
标题: 巴木和GFRP-巴木夹层结构的循环湿热膨胀和收缩行为表征
标题: Characterization Of Cyclic Hygrothermal Swelling And Shrinkage Behavior Of Balsa Wood And Gfrp-Balsa Sandwich Structures
Yuan Wu (GeM), Pascal Casari (GeM), Jamal Fajoui (GeM), Sylvain Fréour (GeM), Mouna Bouziane (GeM)
期刊参考: 第14届国际夹层结构会议(ICSS-14),热那亚大学,2025年6月,热那亚,意大利,意大利
主题: 经典物理 (physics.class-ph)

开发以更环保芯材为基础的生物基复合夹层结构的目标是促进航空和海洋等工业的去碳化。 这一研究领域在过去几十年中受到了越来越多的关注。 例如,巴尔萨木已作为一种高度有前景的泡沫或蜂窝芯材替代品出现,提供了一种轻质、快速可再生且成本效益高的解决方案。 然而,如巴尔萨木和亚麻等植物纤维通常表现出较高的亲水性,这可能会影响它们的机械性能和长期耐久性。 因此,迫切需要进一步研究巴尔萨木芯夹层结构的循环湿热老化行为的表征,特别是识别皮肤和芯材中的湿度引起的应变和内部应力,以及研究木材纤维、树脂和玻璃纤维中的湿度脱附过程及相关的热收缩现象。 因此,本工作采用两个完整的吸湿-脱湿循环来表征由三种不同材料组成的试样的湿扩散行为,包括纯巴尔萨木、树脂浸渍巴尔萨木和具有两种玻璃纤维增强聚合物(GFRP)皮肤的巴尔萨木芯夹层结构。 研究了所有试样在厚度、长度和宽度方向上的含水量和吸湿应变的变化,旨在识别长期老化循环中表现出的吸湿膨胀和热收缩行为。

The objective of developing bio-based composite sandwich structures with greener core materials is to facilitate the decarbonization of industries such as aviation and maritime. This field of research has received increasing attention over the past decades. For example, balsa wood has emerged as a highly promising alternative to foam or honeycomb cores, offering a lightweight, rapidly renewable and cost-effective solution. However, plant fibers such as balsa wood and flax often display high hydrophilic behavior, which could affect their mechanical performance and long-term durability. It is therefore imperative to promote further research into the characterization of the cyclic hygrothermal aging behavior of balsa wood core sandwich structures, in particular the identification of moistureinduced strains and internal stresses in the skins and cores, as well as the investigation of moisture desorption processes and the associated thermal shrinkage phenomena in wood fibers, resins and glass fibers. Accordingly, this work employs two complete moisture absorption-desorption cycles to characterize the moisture diffusion behavior of specimens comprising three different materials, including the pure balsa wood, resin-infused balsa and balsa core sandwich structures with two Glass-Fiber-Reinforced-Polymer (GFRP) skins. The changes in moisture content and hygroscopic strains in the thickness, length and width directions of all specimens were investigated with a view to identifying the hygroscopic swelling and thermal shrinkage behaviors exhibited during long-term aging cycles.

交叉提交 (展示 1 之 1 条目 )

[3] arXiv:2511.01985 (交叉列表自 cond-mat.mes-hall) [中文pdf, pdf, html, 其他]
标题: 两音调驱动杜芬谐振器在慢速和快速区域之间的动态相变
标题: Dynamical Phase Transitions Across Slow and Fast Regimes in a Two-Tone Driven Duffing Resonator
Soumya S. Kumar, Javier del Pino, Letizia Catalini, Alexander Eichler, Oded Zilberberg
主题: 中尺度与纳米尺度物理 (cond-mat.mes-hall) ; 适应性与自组织系统 (nlin.AO) ; 经典物理 (physics.class-ph) ; 量子物理 (quant-ph)

非线性谐振器对多频驱动的响应揭示了超越传统单音理论的丰富动力学行为。 我们研究在双频激励下的杜芬谐振器,并确定两种驱动之间的竞争,这种竞争由它们的失谐和相对幅度决定。 在慢拍 regime 中,当两个频率非常接近时,次级驱动作为一种调制,会在共存的稳态之间引起动态相变。 我们引入周期平均振幅作为序参数,并绘制出随驱动失谐和振幅比变化的相图,捕捉到了实验中观察到的蓝移与红移之间的显著不对称性。 我们设计了一个模型,将这些相变的起始与系统非线性稳态模式附近的共振特性联系起来。 我们的结果为控制受驱动的非线性系统提供了一个框架,实现了状态操控以及在纳米机械、光学和超导电路平台中的传感。

The response of nonlinear resonators to multifrequency driving reveals rich dynamics beyond conventional single-tone theory. We study a Duffing resonator under bichromatic excitation and identify a competition between the two drives, governed by their detuning and relative amplitudes. In the slow-beating regime, where the tones are closely spaced, the secondary drive acts as a modulation that induces dynamical phase transitions between coexisting stationary states. We introduce the cycle-averaged amplitude as an order parameter and map the resulting phase diagram as a function of the drive detuning and amplitude ratio, capturing the pronounced asymmetry observed for blue versus red detuning in experiment. We devise a model to link the onset of these transitions to the resonance properties around the nonlinear stationary mode of the system. Our results provide a framework for controlling driven nonlinear systems, enabling state manipulation, and sensing in nanomechanical, optical, and superconducting circuit platforms.

替换提交 (展示 1 之 1 条目 )

[4] arXiv:2507.22548 (替换) [中文pdf, pdf, html, 其他]
标题: 摆线作为最速降线:从基本原理出发的一页证明,不使用微积分
标题: The cycloid as brachistochrone: A one-page proof, from first principles, without calculus
Gavin R. Putland
评论: 1页,1图,1个参考文献(作为脚注)。该图的PNG版本是为LaTeXML准备的。此修订版(版本2)从摘要页删除了一个损坏的链接,并将摘要添加到其他页面。
主题: 经典物理 (physics.class-ph) ; 历史与概述 (math.HO) ; 流行物理 (physics.pop-ph)

约翰·伯努利对最速降线问题的光学解法是建立在底层(非光学)原理上的。 随后给出了一个“光学解释”。

Johann Bernoulli's optical solution of the brachistochrone problem is rebuilt on underlying (non-optical) principles. An "optical interpretation" is given afterwards.

总共 4 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号