查看 最近的 文章
本文研究了在双重特殊相对论(DSR)框架下的狄拉克振子的能量谱,重点研究了两个显著模型:Magueijo--Smolin(MS)和Amelino-Camelia模型。 我们在单个粒子的$$O(E^{2}/k^{2})$$近似下,推导了MS和Amelino-Camelia DSR模型中的修正狄拉克方程,并研究了由此产生的能量谱。 研究表明,由于普朗克尺度变形参数$$k$$的存在,标准相对论狄拉克振子谱出现了显著修正,这会根据所采用的DSR模型引入不同的偏差。 对于MS模型,在小$$k$$时,正负能分支出现非均匀位移,随着$$k$$的增加,谱逐渐趋近于规范结果。 在Amelino-Camelia模型中,能量级在$$k$$较低时表现出更大的偏差,且这些异常比MS模型减小得更慢。 结果为量子引力效应对量子系统的影响提供了见解,可能在接近普朗克尺度的能量下的高精度光谱或天体物理观测中有应用。 此外,对这两个DSR模型的比较分析突显了普朗克尺度预测的稳健性,并指导了未来旨在探测量子引力特征的实验工作。
This paper investigates the energy spectrum of the Dirac oscillator within the framework of Doubly Special Relativity (DSR), focusing on two prominent models: the Magueijo--Smolin (MS) and Amelino-Camelia models. We derive the modified Dirac equations in both MS and Amelino-Camelia DSR models under the approximation of $$O(E^{2}/k^{2})$$ for a single particle and examine the resulting energy spectra. The study reveals significant corrections to the standard relativistic Dirac oscillator spectrum due to the Planck-scale deformation parameter $$k$$, which introduces distinct deviations depending on the DSR model employed. For the MS model, we observe non-uniform shifts in both positive and negative energy branches at small $$k$$, with the spectrum gradually flattening toward the canonical result as $$k$$ increases. In the Amelino-Camelia model, the energy levels show larger deviations at lower values of $$k$$, and these anomalies diminish more slowly compared to the MS model. The results provide insights into the impact of quantum gravity effects on quantum systems, with potential applications in high-precision spectroscopic or astrophysical observations at energies near the Planck scale. Furthermore, the comparative analysis of these two DSR models highlights the robustness of Planck-scale predictions and guides future experimental efforts aimed at detecting quantum-gravity signatures.
相对论和量子力学是现代物理的两大支柱,但它们在单粒子路径积分中的统一以及量子测量的动态解释仍然是未解之谜。 历史上,这两个问题被视为独立的问题,但我们在本工作中表明它们是紧密相关的。 我们构建了一个相对论路径积分,可以恢复狄拉克、克莱因-戈登和薛定谔方程,同时揭示传播子中的隐含非局部项。 该术语在可微势中处于休眠状态,但会被不可微噪声激活,通过有界鞅随机过程驱动结果概率。 在此模式下,指针基作为吸收边界出现,玻恩规则源于首次通过统计,而坍缩发生在有限且依赖参数的时间内,从而将测量公理转化为动力学后果。 至关重要的是,我们的工作通过在噪声上取系综平均值,恢复了标准GKSL主方程,因此为退相干提供了第一性原理基础。 由于触发因素是噪声谱,我们的工作表明,工程化“彩色”噪声可以加速或引导坍缩,这表明了实现快速量子比特重置、保 coherence 和超越标准量子极限的量子传感的实际途径。
Relativity and quantum mechanics are two cornerstones of modern physics, yet their unification within a single-particle path integral and a dynamic explanation of quantum measurement remain unresolved. Historically, these two problems have been treated as separate, but we in this work show they are intimately linked. We construct a relativistic path integral that recovers the Dirac, Klein-Gordon, and Schr\"odinger equations, while also exposing a latent nonlocal term in the propagator. This term dormant in differentiable potentials but is activated by non-differentiable noise, driving outcome probabilities through bounded-martingale stochastic process. In this regime, the pointer basis emerges as absorbing boundaries, Born's rule arises from first-passage statistics, and collapse occurs in finite, parameter-dependent time, thereby reducing measurement axioms to dynamical consequences. Crucially, our work recovers the standard GKSL master equation by taking the ensemble average over the noise, and thus provides a first-principles foundation for decoherence. Because the trigger is the noise spectrum, our work shows that engineering ``colored'' noise can expedite or steer collapse, suggesting practical routes to fast qubit reset, coherence preservation, and quantum sensing beyond the standard quantum limit.