查看 最近的 文章
地球的地幔过渡带(MTZ)被广泛认为是一个主要的水储库,对行星的水预算和深部循环过程产生重要影响。 在这里,我们采用晶体结构预测和第一性原理计算,在过渡带条件下识别出一系列稳定的含水镁硅酸盐相。 我们的结果揭示了瓦兹利石中一种压力诱导的氢取代机制,其中H+在约410公里深度附近优先从Mg2+位点迁移至Si4+位点。 这种转变导致电导率显著降低,与地球物理观测结果一致。 我们估算MTZ中的含水量约为1.6重量百分比,与地震和电导率约束相符。 此外,利用增强型机器学习的分子动力学,我们在温度超过2000 K的含水瓦兹利石和林伍德石中发现了双超离子性,其中H+和Mg2+均表现出高离子迁移率。 这种双离子超离子状态可能对岩石类超级地球系外行星的质量输运、电导率和磁场发电机产生深远的影响。
The Earth's mantle transition zone (MTZ) is widely recognized as a major water reservoir, exerting significant influence on the planet's water budget and deep cycling processes. Here, we employ crystal structure prediction and first-principles calculations to identify a series of stable hydrous magnesium silicate phases under transition zone conditions. Our results reveal a pressure-induced hydrogen substitution mechanism in wadsleyite, where H+ preferentially migrates from Mg2+ sites to Si4+ sites near 410 km depth. This transformation leads to a substantial decrease in electrical conductivity, consistent with geophysical observations. We estimate the water content in the MTZ to be approximately 1.6 wt%, aligning with seismic and conductivity constraints. Furthermore, using machine learning-enhanced molecular dynamics, we discover double superionicity in hydrous wadsleyite and ringwoodite at temperatures exceeding 2000 K, wherein both H+ and Mg2+ exhibit high ionic mobility. This dual-ion superionic state has potentially profound implications for mass transport, electrical conductivity, and magnetic dynamo generation in rocky super-Earth exoplanets.
全波形反演(FWI)可以在贝叶斯框架中表示,其中相关的不确定性由后验概率分布(PPD)捕获。 在实际中,使用基于采样的方法如马尔可夫链蒙特卡洛(MCMC)解决贝叶斯FWI计算上是耗时的,因为模型空间的维度极高。 为了缓解这一困难,我们开发了一个深度卷积自编码器(CAE),作为反演的先验知识。 CAE将详细的地下速度模型压缩成低维潜在表示,在模型降维方面比传统方法更有效且地质上一致。 反演过程采用了一种通过自动微分增强的自适应梯度MCMC算法,以在潜在空间中高效计算梯度。 此外,我们在反演过程中通过在线微调实现了迁移学习策略,使框架能够适应原始训练集中未包含的速度结构。 使用合成数据的数值实验表明,与传统MCMC方法相比,该方法在重建速度模型和评估不确定性方面具有更高的效率。
Full waveform inversion (FWI) can be expressed in a Bayesian framework, where the associated uncertainties are captured by the posterior probability distribution (PPD). In practice, solving Bayesian FWI with sampling-based methods such as Markov chain Monte Carlo (MCMC) is computationally demanding because of the extremely high dimensionality of the model space. To alleviate this difficulty, we develop a deep convolutional autoencoder (CAE) that serves as a learned prior for the inversion. The CAE compresses detailed subsurface velocity models into a low-dimensional latent representation, achieving more effective and geologically consistent model reduction than conventional dimension reduction approaches. The inversion procedure employs an adaptive gradient-based MCMC algorithm enhanced by automatic differentiation-based FWI to compute gradients efficiently in the latent space. In addition, we implement a transfer learning strategy through online fine-tuning during inversion, enabling the framework to adapt to velocity structures not represented in the original training set. Numerical experiments with synthetic data show that the method can reconstruct velocity models and assess uncertainty with improved efficiency compared to traditional MCMC methods.
本工作涉及在坎弗朗地下实验室(LSC)的B大厅中中子通量的表征,使用高效中子谱阵列(HENSA)。 此次测量的最终目标是设定ANAIS-112实验背景中相应中子通量效应的限制。 报告了两年测量的初步中子计数率。 讨论了各种数据分析技术,包括脉冲形状鉴别。 还介绍了中子通量光谱重建的初步结果。
Thiswork deals with the characterization of the neutron flux in hall B of the CanfrancUnderground Laboratory (LSC) employing the High Efficiency Neutron Spectrometry Array (HENSA). The ultimate goal of this measurement is to set a limit on the corresponding effects of the neutron flux in the background of the ANAIS-112 experiment. The preliminary neutron counting rates of two years of measurement are reported. Various data analysis techniques, including pulse shape discrimination, are discussed. The first results on the spectral reconstruction of the neutron flux are also presented.
冰立方中微子天文台是一个光学契伦科夫探测器,在南极洲的一个立方公里冰层中进行仪器安装。 中微子相互作用后发出的契伦科夫光子由沿冰中垂直线缆部署的数字光学模块检测。 冰立方探测器密集仪器化的底部中心区域,称为深核心(DeepCore),优化用于探测GeV量级的大气中微子。 当向上的大气中微子穿过地球时,由于与环境电子的相干前向散射,物质效应会改变它们的振荡概率。 这些物质效应取决于中微子的能量以及它们在传播过程中遇到的电子密度分布。 使用相当于冰立方深核心9.3年观测的模拟数据,我们证明大气中微子可用于探测初步参考地球模型的广泛特征。 在本贡献中,我们展示了建立地球物质效应的初步灵敏度,验证地球电子密度的非均匀分布,并测量地球的质量。 此外,我们还展示了深核心对不同层相关密度测量的灵敏度,结合对地球质量及转动惯量的约束。
The IceCube Neutrino Observatory is an optical Cherenkov detector instrumenting one cubic kilometer of ice at the South Pole. The Cherenkov photons emitted following a neutrino interaction are detected by digital optical modules deployed along vertical strings within the ice. The densely instrumented bottom central region of the IceCube detector, known as DeepCore, is optimized to detect GeV-scale atmospheric neutrinos. As upward-going atmospheric neutrinos pass through Earth, matter effects alter their oscillation probabilities due to coherent forward scattering with ambient electrons. These matter effects depend upon the energy of neutrinos and the density distribution of electrons they encounter during their propagation. Using simulated data at the IceCube Deepcore equivalent to its 9.3 years of observation, we demonstrate that atmospheric neutrinos can be used to probe the broad features of the Preliminary Reference Earth Model. In this contribution, we present the preliminary sensitivities for establishing the Earth matter effects, validating the non-homogeneous distribution of Earth's electron density, and measuring the mass of Earth. Further, we also show the DeepCore sensitivity to perform the correlated density measurement of different layers incorporating constraints on Earth's mass and moment of inertia.