Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 8 Aug 2016
(v1)
, last revised 22 Mar 2017 (this version, v2)]
Title: Growth of perturbations in nonlocal gravity with non-$Λ$CDM background
Title: 非局部引力中扰动的增长:非$Λ$冷暗物质背景
Abstract: We re-analyze the nonlocal gravity model of Deser and Woodard which was proposed to account for the current phase of cosmic acceleration. We show that the growth of perturbations predicted by this nonlocal gravity model when its background evolution is fixed by some particular non-$\Lambda$CDM models can be substantially lower than when its background is fixed by $\Lambda$CDM. This can be seen when we consider the background expansion by a dark energy model with a slightly less negative equation of state with respect to cosmological constant. Our results hints towards a fact that the choice of the background expansion can play a crucial role how this nonlocal gravity model can fit the growth history data. While the growth data might show better consistency to GR models (among the background models we studied so far), it seems the nonlocal gravity model studied in this work is able to show comparable consistency to the growth data as well. Showing this consistency can be considered as a significant result since this model can stand as a distinguishable alternative to the standard model of cosmology.
Submission history
From: Sohyun Park [view email][v1] Mon, 8 Aug 2016 18:26:22 UTC (124 KB)
[v2] Wed, 22 Mar 2017 05:59:12 UTC (125 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.