Quantitative Biology > Molecular Networks
[Submitted on 22 Nov 2019
]
Title: Biological Regulatory Networks are Minimally Frustrated
Title: 生物调控网络是最小挫折的
Abstract: Characterization of the differences between biological and random networks can reveal the design principles that enable the robust realization of crucial biological functions including the establishment of different cell types. Previous studies, focusing on identifying topological features that are present in biological networks but not in random networks, have, however, provided few functional insights. We use a Boolean modeling framework and ideas from spin glass literature to identify functional differences between five real biological networks and random networks with similar topological features. We show that minimal frustration is a fundamental property that allows biological networks to robustly establish cell types and regulate cell fate choice, and this property can emerge in complex networks via Darwinian evolution. The study also provides clues regarding how the regulation of cell fate choice can go awry in a disease like cancer and lead to the emergence of aberrant cell types.
Submission history
From: Shubham Tripathi [view email][v1] Fri, 22 Nov 2019 21:16:00 UTC (3,468 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.