Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > cond-mat > arXiv:2212.12201

Help | Advanced Search

Condensed Matter > Soft Condensed Matter

arXiv:2212.12201 (cond-mat)
[Submitted on 23 Dec 2022 ]

Title: Delocalized Electronic Excitations and their Role in Directional Charge Transfer in the Reaction Center of Rhodobacter Sphaeroides

Title: 反应中心中非定域电子激发及其在定向电荷转移中的作用

Authors:Sabrina Volpert, Zohreh Hashemi, Johannes M. Foerster, Mario R. G. Marques, Ingo Schelter, Stephan Kümmel, Linn Leppert
Abstract: In purple bacteria, the fundamental charge-separation step that drives the conversion of radiation energy into chemical energy proceeds along one branch - the A branch - of a heterodimeric pigment-protein complex, the reaction center. Here, we use first principles time-dependent density functional theory (TDDFT) with an optimally-tuned range-separated hybrid functional to investigate the electronic and excited-state structure of the primary six pigments in the reaction center of \textit{Rhodobacter sphaeroides}. By explicitly including amino-acid residues surrounding these six pigments in our TDDFT calculations, we systematically study the effect of the protein environment on energy and charge-transfer excitations. Our calculations show that a forward charge transfer into the A branch is significantly lower in energy than the first charge transfer into the B branch, in agreement with the unidirectional charge transfer observed experimentally. We further show that inclusion of the protein environment redshifts this excitation significantly, allowing for energy transfer from the coupled $Q_x$ excitations. Through analysis of transition and difference densities, we demonstrate that most of the $Q$-band excitations are strongly delocalized over several pigments and that both their spatial delocalization and charge-transfer character determine how strongly affected they are by thermally-activated molecular vibrations. Our results suggest a mechanism for charge-transfer in this bacterial reaction center and pave the way for further first-principles investigations of the interplay between delocalized excited states, vibronic coupling, and the role of the protein environment of this and other complex light-harvesting systems.
Abstract: In purple bacteria, the fundamental charge-separation step that drives the conversion of radiation energy into chemical energy proceeds along one branch - the A branch - of a heterodimeric pigment-protein complex, the reaction center. Here, we use first principles time-dependent density functional theory (TDDFT) with an optimally-tuned range-separated hybrid functional to investigate the electronic and excited-state structure of the primary six pigments in the reaction center of \textit{球形红杆菌}. By explicitly including amino-acid residues surrounding these six pigments in our TDDFT calculations, we systematically study the effect of the protein environment on energy and charge-transfer excitations. Our calculations show that a forward charge transfer into the A branch is significantly lower in energy than the first charge transfer into the B branch, in agreement with the unidirectional charge transfer observed experimentally. We further show that inclusion of the protein environment redshifts this excitation significantly, allowing for energy transfer from the coupled $Q_x$ excitations. Through analysis of transition and difference densities, we demonstrate that most of the $Q$-band excitations are strongly delocalized over several pigments and that both their spatial delocalization and charge-transfer character determine how strongly affected they are by thermally-activated molecular vibrations. Our results suggest a mechanism for charge-transfer in this bacterial reaction center and pave the way for further first-principles investigations of the interplay between delocalized excited states, vibronic coupling, and the role of the protein environment of this and other complex light-harvesting systems.
Subjects: Soft Condensed Matter (cond-mat.soft) ; Biological Physics (physics.bio-ph); Chemical Physics (physics.chem-ph); Computational Physics (physics.comp-ph)
Cite as: arXiv:2212.12201 [cond-mat.soft]
  (or arXiv:2212.12201v1 [cond-mat.soft] for this version)
  https://doi.org/10.48550/arXiv.2212.12201
arXiv-issued DOI via DataCite

Submission history

From: Linn Leppert [view email]
[v1] Fri, 23 Dec 2022 08:32:44 UTC (10,894 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
cond-mat.soft
< prev   |   next >
new | recent | 2022-12
Change to browse by:
cond-mat
physics
physics.bio-ph
physics.chem-ph
physics.comp-ph

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号