Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > astro-ph > arXiv:2301.02231

Help | Advanced Search

Astrophysics > Astrophysics of Galaxies

arXiv:2301.02231 (astro-ph)
[Submitted on 5 Jan 2023 (v1) , last revised 5 Oct 2023 (this version, v2)]

Title: Predicting the impact of feedback on matter clustering with machine learning in CAMELS

Title: 用机器学习预测反馈对物质聚集的影响在CAMELS中

Authors:Ana Maria Delgado, Daniel Angles-Alcazar, Leander Thiele, Shivam Pandey, Kai Lehman, Rachel S. Somerville, Michelle Ntampaka, Shy Genel, Francisco Villaescusa-Navarro, Lars Hernquist
Abstract: Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at $z=0$ using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, containing thousands of $(25\,h^{-1}{\rm Mpc})^3$ volume realizations with varying cosmology, initial random field, stellar and AGN feedback strength and sub-grid model implementation methods. We show that baryonic physics affects matter clustering on scales $k \gtrsim 0.4\,h\,\mathrm{Mpc}^{-1}$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive halos ($M_{\rm 200c} > 10^{13.5}$\,\Msun) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of halos across the full mass range $10^{10} \leq M_\mathrm{halo}/$\Msun$< 10^{15}$ can predict the effect of galaxy formation on the matter power spectrum on scales $k = 1.0$--20.0\,$h\,\mathrm{Mpc}^{-1}$.
Abstract: 从总物质功率谱中提取出满足即将到来的宇宙学调查所需精度的信息,需要解开星系形成过程对物质分布的复杂影响。 我们利用来自宇宙学与机器学习模拟项目(CAMELS)的功率谱库,研究了在$z=0$尺度下重子物理对物质聚集的影响,该库包含数千个$(25\,h^{-1}{\rm Mpc})^3$体积实现,具有不同的宇宙学参数、初始随机场、恒星和活动星系核反馈强度以及亚网格模型实现方法。 我们表明,重子物理在$k \gtrsim 0.4\,h\,\mathrm{Mpc}^{-1}$尺度上影响物质聚集,这种影响的大小取决于星系形成实现的细节以及宇宙学和天体物理参数的变化。 增强活动星系核反馈强度会减少晕中的重子分数,并相对于N体模拟产生更强的功率抑制,而更强的恒星反馈通常由于抑制黑洞增长从而减少活动星系核反馈的影响,导致效果较弱。 我们发现大质量晕的平均重子分数($M_{\rm 200c} > 10^{13.5}$ \Msun )与物质聚集的抑制之间存在广泛的相关性,但由于对反馈参数的更广泛探索和宇宙方差效应,与之前的工作相比存在显著的散射。 我们证明,一个在全质量范围内的晕的重子含量和丰度上训练的随机森林回归器$10^{10} \leq M_\mathrm{halo}/$\Msun $< 10^{15}$ 可以预测星系形成对物质功率谱的影响在尺度$k = 1.0$--20.0$h\,\mathrm{Mpc}^{-1}$。
Subjects: Astrophysics of Galaxies (astro-ph.GA) ; Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Cite as: arXiv:2301.02231 [astro-ph.GA]
  (or arXiv:2301.02231v2 [astro-ph.GA] for this version)
  https://doi.org/10.48550/arXiv.2301.02231
arXiv-issued DOI via DataCite

Submission history

From: Ana Maria Delgado [view email]
[v1] Thu, 5 Jan 2023 18:56:56 UTC (4,870 KB)
[v2] Thu, 5 Oct 2023 20:10:53 UTC (3,627 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
view license
Current browse context:
astro-ph.GA
< prev   |   next >
new | recent | 2023-01
Change to browse by:
astro-ph
astro-ph.CO

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号