Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2306.07146

Help | Advanced Search

Mathematics > Functional Analysis

arXiv:2306.07146 (math)
[Submitted on 12 Jun 2023 ]

Title: De Branges-Rovnyak spaces and local Dirichlet spaces of higher order

Title: 德布兰斯-罗夫尼亚克空间和高阶局部狄利克雷空间

Authors:Bartosz Łanucha, Małgorzata Michalska, Maria Nowak, Andrzej Sołtysiak
Abstract: We discuss de Branges-Rovnyak spaces $\mathcal H(b)$ generated by nonextreme and rational functions $b$ and local Dirichlet spaces of order $m$ introduced in [6]. In [6] the authors characterized nonextreme $b$ for which the operator $Y=S|_{\mathcal H(b)}$, the restriction of the shift operator $S$ on $H^2$ to $\mathcal H(b)$, is a strict $2m$-isometry and proved that such spaces $\mathcal H (b)$ are equal to local Dirichlet spaces of order $m$. Here we give a characterization of local Dirichlet spaces of order $m$ in terms of the $m$-th derivatives that is a generalization of a known result on local Dirichlet spaces. We also find explicit formulas for $b$ in the case when $\mathcal H(b)$ coincides with local Dirichlet space of order $m$ with equality of norms. Finally, we prove a property of wandering vectors of $Y$ analogous to the property of wandering vectors of the restriction of $S$ to harmonically weighted Dirichlet spaces obtained by D. Sarason in [11].
Abstract: 我们讨论由非极端和有理函数 $b$ 生成的 de Branges-Rovnyak 空间 $\mathcal H(b)$ 以及在 [6] 中引入的阶数为 $m$ 的局部 Dirichlet 空间。 在[6]中,作者表征了非极端的$b$,其中算子$Y=S|_{\mathcal H(b)}$,即移位算子$S$在$H^2$上到$\mathcal H(b)$的限制,是一个严格的$2m$-等距算子,并证明了这样的空间$\mathcal H (b)$等于阶数为$m$的局部狄利克雷空间。 此处我们给出了关于阶数为$m$的局部 Dirichlet 空间的表征,该表征基于第$m$阶导数,这是对已知的局部 Dirichlet 空间结果的推广。 我们还找到了$b$的显式公式,当$\mathcal H(b)$与阶数为$m$的局部 Dirichlet 空间在范数相等的情况下。 最后,我们证明了$Y$的漫游向量的一个性质,该性质类似于 D. Sarason 在 [11] 中获得的限制到调和加权 Dirichlet 空间的$S$的漫游向量的性质。
Comments: 11 pages
Subjects: Functional Analysis (math.FA)
MSC classes: 47B35, 30H10
Cite as: arXiv:2306.07146 [math.FA]
  (or arXiv:2306.07146v1 [math.FA] for this version)
  https://doi.org/10.48550/arXiv.2306.07146
arXiv-issued DOI via DataCite

Submission history

From: Bartosz Łanucha [view email]
[v1] Mon, 12 Jun 2023 14:30:16 UTC (20 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
view license
Current browse context:
math.FA
< prev   |   next >
new | recent | 2023-06
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号