Computer Science > Computational Complexity
[Submitted on 28 Jun 2023
]
Title: A Review on Optimality Investigation Strategies for the Balanced Assignment Problem
Title: 关于平衡分配问题最优性研究策略的综述
Abstract: Mathematical Selection is a method in which we select a particular choice from a set of such. It have always been an interesting field of study for mathematicians. Accordingly, Combinatorial Optimization is a sub field of this domain of Mathematical Selection, where we generally, deal with problems subjecting to Operation Research, Artificial Intelligence and many more promising domains. In a broader sense, an optimization problem entails maximising or minimising a real function by systematically selecting input values from within an allowed set and computing the function's value. A broad region of applied mathematics is the generalisation of metaheuristic theory and methods to other formulations. More broadly, optimization entails determining the finest virtues of some fitness function, offered a fixed space, which may include a variety of distinct types of decision variables and contexts. In this work, we will be working on the famous Balanced Assignment Problem, and will propose a comparative analysis on the Complexity Metrics of Computational Time for different Notions of solving the Balanced Assignment Problem.
Submission history
From: Athilingam Ramamoorthy [view email][v1] Wed, 28 Jun 2023 15:08:16 UTC (369 KB)
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.