Statistics > Machine Learning
[Submitted on 28 Jun 2023
]
Title: Stochastic Methods in Variational Inequalities: Ergodicity, Bias and Refinements
Title: 随机方法在变分不等式中的应用:遍历性、偏差与改进
Abstract: For min-max optimization and variational inequalities problems (VIP) encountered in diverse machine learning tasks, Stochastic Extragradient (SEG) and Stochastic Gradient Descent Ascent (SGDA) have emerged as preeminent algorithms. Constant step-size variants of SEG/SGDA have gained popularity, with appealing benefits such as easy tuning and rapid forgiveness of initial conditions, but their convergence behaviors are more complicated even in rudimentary bilinear models. Our work endeavors to elucidate and quantify the probabilistic structures intrinsic to these algorithms. By recasting the constant step-size SEG/SGDA as time-homogeneous Markov Chains, we establish a first-of-its-kind Law of Large Numbers and a Central Limit Theorem, demonstrating that the average iterate is asymptotically normal with a unique invariant distribution for an extensive range of monotone and non-monotone VIPs. Specializing to convex-concave min-max optimization, we characterize the relationship between the step-size and the induced bias with respect to the Von-Neumann's value. Finally, we establish that Richardson-Romberg extrapolation can improve proximity of the average iterate to the global solution for VIPs. Our probabilistic analysis, underpinned by experiments corroborating our theoretical discoveries, harnesses techniques from optimization, Markov chains, and operator theory.
Submission history
From: Emmanouil Vasileios Vlatakis Gkaragkounis [view email][v1] Wed, 28 Jun 2023 18:50:07 UTC (1,874 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.