Mathematics > Probability
[Submitted on 3 Aug 2023
]
Title: Records in the Infinite Occupancy Scheme
Title: 无限占用方案中的记录
Abstract: We consider the classic infinite occupancy scheme, where balls are thrown in boxes independently, with probability $p_j$ of hitting box $j$. Each time a box receives its first ball we speak of a record and, more generally, call an $r$-record every event when a box receives its $r$th ball. Assuming that the sequence $(p_j)$ is not decaying too fast, we show that after many balls have been thrown, the suitably scaled point process of $r$-record times is approximately Poisson. The joint convergence of $r$-record processes is argued under a condition of regular variation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.