Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2310.00869

Help | Advanced Search

Mathematics > Analysis of PDEs

arXiv:2310.00869 (math)
[Submitted on 2 Oct 2023 ]

Title: The regularity of the coupled system between an electrical network with fractional dissipation and a plate equation with fractional inertial rotational

Title: 具有分数阻尼的电气网络与具有分数惯性旋转的板方程之间的耦合系统的正则性

Authors:Santos R.W.S. Bejarano, Filomena B.R. Mendes, Fredy M. Sobrado Suárez, Gilson Tumelero, Marieli M. Tumelero
Abstract: In this work we study a strongly coupled system between the equation of plates with fractional rotational inertial force $\kappa(-\Delta)^\beta u_{tt}$ where the parameter $0 <\beta\leq 1$ and the equation of an electrical network containing a fractional dissipation term $\delta(-\Delta)^\theta v_t$ where the parameter $0\leq \theta\leq 1$, the strong coupling terms are given by the Laplacian of the displacement speed $\gamma \Delta u_t$ and the Laplacian electric potential field $\gamma\Delta v_t$. When $\beta = 1$, we have the Kirchoff-Love plate and when $\beta = 0$, we have the Euler-Bernoulli plate recently studied in Su\'arez-Mendes (2022-Preprinter)\cite{Suarez}. The contributions of this research are: We prove the semigroup $S(t)$ associated with the system is not analytic in $(\theta,\beta)\in [0,1]\times(0,1]-\{( 1,1/2)\}$. We also determine two Gevrey classes: $s_1 >\frac{1}{2\max\{ \frac{1-\beta}{3-\beta}, \frac{\theta}{2+\theta-\beta}\}}$ for $2\leq \theta+2\beta$ and $s_2> \frac{2(2+\theta-\beta)}{\theta}$ when the parameters $\theta$ and $\beta$ lies in the interval $(0, 1)$ and we finish by proving that at the point $(\theta,\beta)=(1,1/2)$ the semigroup $S(t)$ is analytic and with a note about the asymptotic behavior of $S(t)$. We apply semigroup theory, the frequency domain method together with multipliers and the proper decomposition of the system components and Lions' interpolation inequality.
Abstract: 在本工作中,我们研究了板的方程与分数旋转惯性力 $\kappa(-\Delta)^\beta u_{tt}$之间的强耦合系统,其中参数为 $0 <\beta\leq 1$,以及包含分数耗散项 $\delta(-\Delta)^\theta v_t$ 的电气网络方程,其中参数为 $0\leq \theta\leq 1$,强耦合项由位移速度的拉普拉斯算子 $\gamma \Delta u_t$和电势场的拉普拉斯算子 $\gamma\Delta v_t$给出。 当 $\beta = 1$时,我们得到 Kirchoff-Love 板,当 $\beta = 0$时,我们得到最近在 Suárez-Mendes (2022-Preprinter)\cite{Suarez}中研究的 Euler-Bernoulli 板。 本研究的贡献是:我们证明与系统相关的半群 $S(t)$在 $(\theta,\beta)\in [0,1]\times(0,1]-\{( 1,1/2)\}$中不是解析的。 我们也确定两个Gevrey类:当参数$\theta$和$\beta$位于区间$(0, 1)$时,$s_1 >\frac{1}{2\max\{ \frac{1-\beta}{3-\beta}, \frac{\theta}{2+\theta-\beta}\}}$对于$2\leq \theta+2\beta$和$s_2> \frac{2(2+\theta-\beta)}{\theta}$,我们最后证明在点$(\theta,\beta)=(1,1/2)$时半群$S(t)$是解析的,并对$S(t)$的渐近行为进行说明。 我们应用半群理论、频域方法以及乘子,系统的适当分解和Lions的插值不等式。
Comments: 40 pages
Subjects: Analysis of PDEs (math.AP)
Cite as: arXiv:2310.00869 [math.AP]
  (or arXiv:2310.00869v1 [math.AP] for this version)
  https://doi.org/10.48550/arXiv.2310.00869
arXiv-issued DOI via DataCite

Submission history

From: Fredy Maglorio Sobrado Suárez [view email]
[v1] Mon, 2 Oct 2023 03:17:20 UTC (30 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
math.AP
< prev   |   next >
new | recent | 2023-10
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号