Nuclear Theory
[Submitted on 30 Oct 2023
(v1)
, last revised 17 Jun 2024 (this version, v3)]
Title: Eigenvector Continuation and Projection-Based Emulators
Title: 特征向量延续和基于投影的模拟器
Abstract: Eigenvector continuation is a computational method for parametric eigenvalue problems that uses subspace projection with a basis derived from eigenvector snapshots from different parameter sets. It is part of a broader class of subspace-projection techniques called reduced-basis methods. In this colloquium article, we present the development, theory, and applications of eigenvector continuation and projection-based emulators. We introduce the basic concepts, discuss the underlying theory and convergence properties, and present recent applications for quantum systems and future prospects.
Submission history
From: Dean Lee J [view email][v1] Mon, 30 Oct 2023 10:30:27 UTC (2,700 KB)
[v2] Fri, 22 Mar 2024 04:21:41 UTC (2,716 KB)
[v3] Mon, 17 Jun 2024 08:52:48 UTC (2,733 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.