Mathematics > Number Theory
[Submitted on 4 Jan 2024
]
Title: Two improvements in Brauer's theorem on forms
Title: 关于型的布劳尔定理的两项改进
Abstract: Let $k$ be a Brauer field, that is, a field over which every diagonal form in sufficiently many variables has a nonzero solution; for instance, $k$ could be an imaginary quadratic number field. Brauer proved that if $f_1, \ldots, f_r$ are homogeneous polynomials on a $k$-vector space $V$ of degrees $d_1, \ldots, d_r$, then the variety $Z$ defined by the $f_i$'s has a non-trivial $k$-point, provided that $\dim{V}$ is sufficiently large compared to the $d_i$'s and $k$. We offer two improvements to this theorem, assuming $k$ is infinite. First, we show that the Zariski closure of the set $Z(k)$ of $k$-points has codimension $<C$, where $C$ is a constant depending only on the $d_i$'s and $k$. And second, we show that if the strength of the $f_i$'s is sufficiently large in terms of the $d_i$'s and $k$, then $Z(k)$ is actually Zariski dense in $Z$. The proofs rely on recent work of Ananyan and Hochster on high strength polynomials.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.