Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2024
(v1)
, last revised 29 Aug 2025 (this version, v2)]
Title: ALow-Cost Real-Time Framework for Industrial Action Recognition Using Foundation Models
Title: 一种基于基础模型的工业动作识别低成本实时框架
Abstract: Action recognition (AR) in industrial environments -- particularly for identifying actions and operational gestures -- faces persistent challenges due to high deployment costs, poor cross-scenario generalization, and limited real-time performance. To address these issues, we propose a low-cost real-time framework for industrial action recognition using foundation models, denoted as LRIAR, to enhance recognition accuracy and transferability while minimizing human annotation and computational overhead. The proposed framework constructs an automatically labeled dataset by coupling Grounding DINO with the pretrained BLIP-2 image encoder, enabling efficient and scalable action labeling. Leveraging the constructed dataset, we train YOLOv5 for real-time action detection, and a Vision Transformer (ViT) classifier is deceloped via LoRA-based fine-tuning for action classification. Extensive experiments conducted in real-world industrial settings validate the effectiveness of LRIAR, demonstrating consistent improvements over state-of-the-art methods in recognition accuracy, scenario generalization, and deployment efficiency.
Submission history
From: Wensheng Liang [view email][v1] Wed, 13 Mar 2024 11:11:59 UTC (5,181 KB)
[v2] Fri, 29 Aug 2025 08:56:49 UTC (3,559 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.