Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2406.01573

Help | Advanced Search

Mathematics > Category Theory

arXiv:2406.01573 (math)
[Submitted on 3 Jun 2024 ]

Title: A classifying localic category for locally compact locales with application to the Axiom of Infinity (poster)

Title: 局部拓扑范畴的分类及其在无限公理中的应用(海报)

Authors:Christopher Francis Townsend
Abstract: For an internal category $\mathbb{C}$ in a cartesian category $\mathcal{C}$ we define, naturally in objects $X$ of $\mathcal{C}$, $Prin_{\mathbb{C}}(X)$. This is a category whose objects are principal $c \mathbb{C}$-bundles over $X$ and whose morphisms are principal $c(\mathbb{C}^{\uparrow})$-bundles. Here $c(\_)$ denotes taking the core groupoid of a category (same objects but only isomorphisms as morphisms) and $\mathbb{C}^{\uparrow}$ is the arrow category of $\mathbb{C}$ (objects morphisms, morphisms commuting squares). We show that $X \mapsto Prin_{\mathbb{C}}(X)$ is a stack of categories and call stacks of this sort lax-geometric. We then provide two sufficient conditions for a stack to be lax-geometric and use them to prove that the pseudo-functor $X \mapsto \mathbf{LK}_{Sh(X)}$ on the category of locales $\mathbf{Loc}$ is a lax-geometric stack. Here $\mathbf{LK}_{Sh(X)}$ is the category of locally compact locales in the topos of sheaves over $X$, $Sh(X)$. Therefore there exists a localic category $\mathbb{C}_{\mathbf{LK}}$ such that $\mathbf{LK}_{Sh(X)} \simeq Prin_{\mathbb{C}_{\mathbf{LK}}}(X)$ naturally for every locale $X$. We then show how this can be used to give a new localic characterisation of the Axiom of Infinity.
Abstract: 对于一个笛卡尔范畴 $\mathcal{C}$ 中的内部范畴 $\mathbb{C}$,我们自然地在 $\mathcal{C}$ 的对象 $X$ 上定义, $Prin_{\mathbb{C}}(X)$。 这是一个对象为$c \mathbb{C}$-丛在$X$上的范畴,其态射为$c(\mathbb{C}^{\uparrow})$-丛。 这里 $c(\_)$表示取一个范畴的核心群胚(相同对象但只有同构作为态射),而$\mathbb{C}^{\uparrow}$是$\mathbb{C}$的箭头范畴(对象为态射,态射为交换的平方)。 我们证明$X \mapsto Prin_{\mathbb{C}}(X)$是一个范畴的层,并将这种类型的层称为松几何层。 我们随后提供两个充分条件,使得堆栈为松弛几何的,并利用它们证明在局部对象范畴 $\mathbf{Loc}$ 上的伪函子 $X \mapsto \mathbf{LK}_{Sh(X)}$ 是一个松弛几何堆栈。 此处 $\mathbf{LK}_{Sh(X)}$ 是到预层拓扑中的局部紧致局部对象的范畴, $X$, $Sh(X)$。 因此存在一个局部范畴$\mathbb{C}_{\mathbf{LK}}$使得$\mathbf{LK}_{Sh(X)} \simeq Prin_{\mathbb{C}_{\mathbf{LK}}}(X)$对每个局部$X$自然成立。然后我们展示如何利用这一点给出无限公理的新局部特征。
Subjects: Category Theory (math.CT)
MSC classes: 06D22
Cite as: arXiv:2406.01573 [math.CT]
  (or arXiv:2406.01573v1 [math.CT] for this version)
  https://doi.org/10.48550/arXiv.2406.01573
arXiv-issued DOI via DataCite

Submission history

From: Christopher Townsend [view email]
[v1] Mon, 3 Jun 2024 17:51:56 UTC (14 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
math.CT
< prev   |   next >
new | recent | 2024-06
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号