Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2406.12152

Help | Advanced Search

Mathematics > Number Theory

arXiv:2406.12152 (math)
[Submitted on 17 Jun 2024 ]

Title: On the Stieltjes Approximation Error to Logarithmic Integral

Title: 关于对数积分的Stieltjes逼近误差

Authors:Jonatan Gomez
Abstract: This paper studies the error introduced ($\displaystyle \varepsilon(x)$) by the Stieltjes asymptotic approximation series $\displaystyle li_{*}(x) = \frac{x}{\log(x)}\sum_{k=0}^{n-1}\frac{k!}{\log^{k}(x)} + (\log(x)-n)\frac{xn!}{\log^{n+1}(x)}$ to the logarithmic integral function $li(x)$ with $\displaystyle n = \lfloor \log(x) \rfloor$ for all $x\ge e$. For this purpose, this paper uses some relations between term $\displaystyle \frac{n!}{\log^{n}(x)}$ and Stirling's approximation formula. In particular, this paper establishes two non-asymptotic lower and upper bounds for $\varepsilon(e^n)$ with $n \ge 1$ and $1 \le m \le n$: (i) $\displaystyle \varepsilon(e^m) + \frac{\sqrt{2\pi}}{8}\sum_{k=m+1}^{n} \frac{1}{k^{\frac{3}{2}}} \le \varepsilon(e^n) \le \varepsilon(e^{m}) + \frac{\sqrt{2\pi}}{4}\sum_{k=m+1}^{n} \frac{k+2}{k^{\frac{5}{2}}}$ (ii) $\displaystyle L_m - \frac{\sqrt{2\pi}}{4\sqrt{n+1}} \le \varepsilon_{n} \le R_m - \frac{\sqrt{2\pi}}{2\sqrt{n}} - \frac{\sqrt{2\pi}}{3\sqrt{n^3}}$. Here, $\displaystyle L_m = \varepsilon_{m} + \frac{\sqrt{2\pi}}{4\sqrt{m+1}}$ and $\displaystyle R_m = \varepsilon_{m} + \frac{\sqrt{2\pi}}{2\sqrt{m}} + \frac{\sqrt{2\pi}}{3\sqrt{m^3}}$ Moreover, this paper shows that if $\displaystyle |\varepsilon(x)| \le \frac{\sqrt{2\pi}}{\sqrt{\log(x)}}$ then $li(e^n) \le li_{*}(e^n)$ for all $n \ge 1$. Finally, this paper establishes non-asymptotic lower and upper bounds for $\varepsilon(x)$ with $x \ge e$: $\displaystyle L_m - \frac{\sqrt{2\pi}}{4\sqrt{n+1}} -\frac{\sqrt{2\pi}}{36\sqrt{n^3}} < \varepsilon(x) \le R_m - \frac{\sqrt{2\pi}}{2\sqrt{n}} - \frac{\sqrt{2\pi}}{3\sqrt{n^3}}$
Abstract: 本文研究了斯特尔吉斯渐近展开式$\displaystyle li_{*}(x) = \frac{x}{\log(x)}\sum_{k=0}^{n-1}\frac{k!}{\log^{k}(x)} + (\log(x)-n)\frac{xn!}{\log^{n+1}(x)}$对对数积分函数$li(x)$的误差($\displaystyle \varepsilon(x)$),其中$\displaystyle n = \lfloor \log(x) \rfloor$对所有$x\ge e$都成立。 为此,本文使用了项$\displaystyle \frac{n!}{\log^{n}(x)}$与斯特林近似公式之间的某些关系。 特别是,本文建立了针对$\varepsilon(e^n)$的两个非渐近下界和上界,分别为$n \ge 1$和$1 \le m \le n$: (i)$\displaystyle \varepsilon(e^m) + \frac{\sqrt{2\pi}}{8}\sum_{k=m+1}^{n} \frac{1}{k^{\frac{3}{2}}} \le \varepsilon(e^n) \le \varepsilon(e^{m}) + \frac{\sqrt{2\pi}}{4}\sum_{k=m+1}^{n} \frac{k+2}{k^{\frac{5}{2}}}$ (ii)$\displaystyle L_m - \frac{\sqrt{2\pi}}{4\sqrt{n+1}} \le \varepsilon_{n} \le R_m - \frac{\sqrt{2\pi}}{2\sqrt{n}} - \frac{\sqrt{2\pi}}{3\sqrt{n^3}}$ 这里,$\displaystyle L_m = \varepsilon_{m} + \frac{\sqrt{2\pi}}{4\sqrt{m+1}}$ 和 $\displaystyle R_m = \varepsilon_{m} + \frac{\sqrt{2\pi}}{2\sqrt{m}} + \frac{\sqrt{2\pi}}{3\sqrt{m^3}}$ 此外,本文表明如果 $\displaystyle |\varepsilon(x)| \le \frac{\sqrt{2\pi}}{\sqrt{\log(x)}}$ 则 $li(e^n) \le li_{*}(e^n)$ 对所有 $n \ge 1$ 成立。 最后,本文为$\varepsilon(x)$建立了非渐近下界和上界,其中$x \ge e$:$\displaystyle L_m - \frac{\sqrt{2\pi}}{4\sqrt{n+1}} -\frac{\sqrt{2\pi}}{36\sqrt{n^3}} < \varepsilon(x) \le R_m - \frac{\sqrt{2\pi}}{2\sqrt{n}} - \frac{\sqrt{2\pi}}{3\sqrt{n^3}}$
Comments: 21 ppages, 2 Figures (each with 3 subfigures)
Subjects: Number Theory (math.NT)
MSC classes: 11A41
Cite as: arXiv:2406.12152 [math.NT]
  (or arXiv:2406.12152v1 [math.NT] for this version)
  https://doi.org/10.48550/arXiv.2406.12152
arXiv-issued DOI via DataCite

Submission history

From: Jonatan Gomez [view email]
[v1] Mon, 17 Jun 2024 23:53:29 UTC (2,766 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
math.NT
< prev   |   next >
new | recent | 2024-06
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号