Statistics > Methodology
[Submitted on 30 Jun 2024
]
Title: Advancing Information Integration through Empirical Likelihood: Selective Reviews and a New Idea
Title: 通过经验似然推进信息集成:选择性综述与新思路
Abstract: Information integration plays a pivotal role in biomedical studies by facilitating the combination and analysis of independent datasets from multiple studies, thereby uncovering valuable insights that might otherwise remain obscured due to the limited sample size in individual studies. However, sharing raw data from independent studies presents significant challenges, primarily due to the need to safeguard sensitive participant information and the cumbersome paperwork involved in data sharing. In this article, we first provide a selective review of recent methodological developments in information integration via empirical likelihood, wherein only summary information is required, rather than the raw data. Following this, we introduce a new insight and a potentially promising framework that could broaden the application of information integration across a wider spectrum. Furthermore, this new framework offers computational convenience compared to classic empirical likelihood-based methods. We provide numerical evaluations to assess its performance and discuss various extensions in the end.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.