Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2409.00117

Help | Advanced Search

Mathematics > Analysis of PDEs

arXiv:2409.00117 (math)
[Submitted on 28 Aug 2024 (v1) , last revised 5 Oct 2024 (this version, v2)]

Title: Pointwise estimates for the fundamental solutions of higher order Schrödinger equations in odd dimensions II: high dimensional case

Title: 高维情形下奇数维更高阶薛定谔方程基本解的逐点估计 II:高维情况

Authors:Han Cheng, Shanlin Huang, Tianxiao Huang, Quan Zheng
Abstract: In this paper, for any odd $n$ and any integer $m\geq1$ with $n>4m$, we study the fundamental solution of the higher order Schr\"{o}dinger equation \begin{equation*} \mathrm{i}\partial_tu(x,t)=((-\Delta)^m+V(x))u(x,t),\quad t\in \mathbb{R},\,\,x\in \mathbb{R}^n, \end{equation*} where $V$ is a real-valued $C^{\frac{n+1}{2}-2m}$ potential with certain decay. Let $P_{ac}(H)$ denote the projection onto the absolutely continuous spectrum space of $H=(-\Delta)^m+V$, and assume that $H$ has no positive embedded eigenvalue. Our main result says that $e^{-\mathrm{i}tH}P_{ac}(H)$ has integral kernel $K(t,x,y)$ satisfying \begin{equation*} |K(t, x,y)|\le C(1+|t|)^{-(\frac{n}{2m}-\sigma)}(1+|t|^{-\frac{n}{2 m}})\left(1+|t|^{-\frac{1}{2 m}}|x-y|\right)^{-\frac{n(m-1)}{2 m-1}},\quad t\neq0,\,x,y\in\mathbb{R}^n, \end{equation*} where $\sigma=2$ if $0$ is an eigenvalue of $H$, and $\sigma=0$ otherwise. A similar result for smoothing operators $H^\frac{\alpha}{2m}e^{-\mathrm{i}tH}P_{ac}(H)$ is also given. The regularity condition $V\in C^{\frac{n+1}{2}-2m}$ is optimal in the second order case, and it also seems optimal when $m>1$.
Abstract: 在本文中,对于任何奇数$n$和任何整数$m\geq1$且$n>4m$,我们研究高阶薛定谔方程的基本解 \begin{equation*} \mathrm{i}\partial_tu(x,t)=((-\Delta)^m+V(x))u(x,t),\quad t\in \mathbb{R},\,\,x\in \mathbb{R}^n, \end{equation*}其中$V$是一个具有特定衰减的实值$C^{\frac{n+1}{2}-2m}$势。 设$P_{ac}(H)$表示到$H=(-\Delta)^m+V$绝对连续谱空间的投影,并假设$H$没有正的嵌入本征值。 我们的主要结果表明,$e^{-\mathrm{i}tH}P_{ac}(H)$有积分核$K(t,x,y)$,满足\begin{equation*} |K(t, x,y)|\le C(1+|t|)^{-(\frac{n}{2m}-\sigma)}(1+|t|^{-\frac{n}{2 m}})\left(1+|t|^{-\frac{1}{2 m}}|x-y|\right)^{-\frac{n(m-1)}{2 m-1}},\quad t\neq0,\,x,y\in\mathbb{R}^n, \end{equation*},其中如果$0$是$H$的特征值,则$\sigma=2$,否则$\sigma=0$。 对于平滑算子 $H^\frac{\alpha}{2m}e^{-\mathrm{i}tH}P_{ac}(H)$ 的类似结果也给出了。 正则性条件 $V\in C^{\frac{n+1}{2}-2m}$ 在二阶情况下是最优的,当 $m>1$ 时似乎也是最优的。
Comments: typos cerrected
Subjects: Analysis of PDEs (math.AP)
Cite as: arXiv:2409.00117 [math.AP]
  (or arXiv:2409.00117v2 [math.AP] for this version)
  https://doi.org/10.48550/arXiv.2409.00117
arXiv-issued DOI via DataCite

Submission history

From: Tianxiao Huang [view email]
[v1] Wed, 28 Aug 2024 06:13:04 UTC (53 KB)
[v2] Sat, 5 Oct 2024 11:30:06 UTC (53 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
math.AP
< prev   |   next >
new | recent | 2024-09
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号