Mathematics > Analysis of PDEs
[Submitted on 1 Sep 2024
]
Title: Data Assimilation to the Primitive Equations in $H^2$
Title: 数据同化到原始方程在$H^2$
Abstract: In this paper we prove that the solution to the primitive equations is predicted by the corresponding data assimilation(DA) equations in $H^2$. Although, the DA equation does not include the direct information about the base solution and its initial conditions, the solution to the DA equation exponentially convergence to the base(original) solution when the external forces are known even before they are observed. Additionally, when the external force is not completely known but its spatially dense observations are available, then the DA is stable, $i.e.$ the DA solution lies in a sufficiently small neighborhood of the base solution.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.