Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2409.13914

Help | Advanced Search

Mathematics > Representation Theory

arXiv:2409.13914 (math)
[Submitted on 20 Sep 2024 (v1) , last revised 21 Oct 2024 (this version, v3)]

Title: Hikita conjecture for classical Lie algebras

Title: Hikita 猜想对于经典李代数

Authors:Do Kien Hoang
Abstract: Let $G$ be $Sp_{2n}$, $SO_{2n}$ or $SO_{2n+1}$ and let $G^\vee$ be its Langlands dual group. Barbasch and Vogan based on earlier work of Lusztig and Spaltenstein, define a duality map $D$ that sends nilpotent orbits $\mathbb{O}_{e^\vee} \subset \mathfrak{g}^\vee$ to special nilpotent orbits $\mathbb{O}_e\subset \mathfrak{g}$. In a work by Losev, Mason-Brown and Matvieievskyi, an upgraded version $\tilde{D}$ of this duality is considered, called the refined BVLS duality. $\tilde{D}(\mathbb{O}_{e^\vee})$ is a $G$-equivariant cover $\tilde{\mathbb{O}}_e$ of $\mathbb{O}_e$. Let $S_{{e^\vee}}$ be the nilpotent Slodowy slice of the orbit $\mathbb{O}_{e^\vee}$. The two varieties $X^\vee= S_{e^\vee}$ and $X=$ Spec$(\mathbb{C}[\tilde{\mathbb{O}}_e])$ are expected to be symplectic dual to each other. In this context, a version of the Hikita conjecture predicts an isomorphism between the cohomology ring of the Springer fiber $\mathcal{B}_{e^\vee}$ and the ring of regular functions on the scheme-theoretic fixed point $X^T$ for some torus $T$. This paper verifies the isomorphism for certain pairs $e$ and $e^\vee$. These cases are expected to cover almost all instances in which the Hikita conjecture holds when $e^\vee$ regular in a Levi $\mathfrak{l}^\vee\subset \mathfrak{g}^\vee$. Our results in these cases follow from the relations of three different types of objects: generalized coinvariant algebras, equivariant cohomology rings, and functions on scheme-theoretic intersections. We also give evidence for the Hikita conjecture when $e^\vee$ is distinguished.
Abstract: 设$G$为$Sp_{2n}$、$SO_{2n}$或$SO_{2n+1}$,并设$G^\vee$为其朗兰兹对偶群。 巴尔巴斯和沃根基于卢斯蒂格和斯帕尔滕斯坦的早期工作,定义了一个对偶映射$D$,该映射将幂零轨道$\mathbb{O}_{e^\vee} \subset \mathfrak{g}^\vee$映射到特殊幂零轨道$\mathbb{O}_e\subset \mathfrak{g}$。在洛塞夫、梅森-布朗和马特维耶夫斯基的著作中,考虑了这个对偶的一个升级版本$\tilde{D}$,称为精炼的BVLS对偶。 $\tilde{D}(\mathbb{O}_{e^\vee})$是一个$G$-等变覆盖$\tilde{\mathbb{O}}_e$,它是$\mathbb{O}_e$的。 设$S_{{e^\vee}}$是轨道$\mathbb{O}_{e^\vee}$的幂零 Slodowy 切片。 两种类型 $X^\vee= S_{e^\vee}$ 和 $X=$ Spec$(\mathbb{C}[\tilde{\mathbb{O}}_e])$被期望为彼此的辛对偶。 在此背景下,Hikita猜想的一个版本预测了Springer纤维的上同调环 $\mathcal{B}_{e^\vee}$ 与某个环面 $T$的方案论固定点 $X^T$上的正则函数环之间的同构。 本文验证了某些对$e$和$e^\vee$的同构。 这些情况预计涵盖当$e^\vee$在一个 Levi$\mathfrak{l}^\vee\subset \mathfrak{g}^\vee$中正则时,Hikita 猜想成立的几乎所有实例。 我们在这些情况下的结果来自于三种不同类型的对象之间的关系:广义不变式代数、等变上同调环以及方案论交集上的函数。 我们还给出了当$e^\vee$为特殊时 Hikita 猜想的证据。
Subjects: Representation Theory (math.RT) ; Algebraic Geometry (math.AG); Combinatorics (math.CO)
Cite as: arXiv:2409.13914 [math.RT]
  (or arXiv:2409.13914v3 [math.RT] for this version)
  https://doi.org/10.48550/arXiv.2409.13914
arXiv-issued DOI via DataCite

Submission history

From: Do Kien Hoang [view email]
[v1] Fri, 20 Sep 2024 21:44:01 UTC (46 KB)
[v2] Tue, 24 Sep 2024 17:59:17 UTC (46 KB)
[v3] Mon, 21 Oct 2024 15:17:52 UTC (46 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
  • Other Formats
view license
Current browse context:
math.RT
< prev   |   next >
new | recent | 2024-09
Change to browse by:
math
math.AG
math.CO

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号