Computer Science > Machine Learning
[Submitted on 28 Dec 2024
(v1)
, last revised 18 Aug 2025 (this version, v2)]
Title: DDD-GenDT: Dynamic Data-driven Generative Digital Twin Framework
Title: DDD-GenDT:动态数据驱动生成数字孪生框架
Abstract: Digital twin (DT) technology enables real-time simulation, prediction, and optimization of physical systems, but practical deployment faces challenges from high data requirements, proprietary data constraints, and limited adaptability to evolving conditions. This work introduces DDD-GenDT, a dynamic data-driven generative digital twin framework grounded in the Dynamic Data-Driven Application Systems (DDDAS) paradigm. The architecture comprises the Physical Twin Observation Graph (PTOG) to represent operational states, an Observation Window Extraction process to capture temporal sequences, a Data Preprocessing Pipeline for sensor structuring and filtering, and an LLM ensemble for zero-shot predictive inference. By leveraging generative AI, DDD-GenDT reduces reliance on extensive historical datasets, enabling DT construction in data-scarce settings while maintaining industrial data privacy. The DDDAS feedback mechanism allows the DT to autonomically adapt predictions to physical twin (PT) wear and degradation, supporting DT-aging, which ensures progressive synchronization of DT with PT evolution. The framework is validated using the NASA CNC milling dataset, with spindle current as the monitored variable. In a zero-shot setting, the GPT-4-based DT achieves an average RMSE of 0.479 A (4.79% of the 10 A spindle current), accurately modeling nonlinear process dynamics and PT aging without retraining. These results show that DDD-GenDT provides a generalizable, data-efficient, and adaptive DT modeling approach, bridging generative AI with the performance and reliability requirements of industrial DT applications.
Submission history
From: Yu-Zheng Lin [view email][v1] Sat, 28 Dec 2024 01:13:30 UTC (8,089 KB)
[v2] Mon, 18 Aug 2025 21:07:07 UTC (3,435 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.