Computer Science > Computation and Language
[Submitted on 1 Jan 2025
]
Title: Reasoning-Oriented and Analogy-Based Methods for Locating and Editing in Zero-Shot Event-Relational Reasoning
Title: 面向推理和类比的零样本事件关系推理中的定位与编辑方法
Abstract: Zero-shot event-relational reasoning is an important task in natural language processing, and existing methods jointly learn a variety of event-relational prefixes and inference-form prefixes to achieve such tasks. However, training prefixes consumes large computational resources and lacks interpretability. Additionally, learning various relational and inferential knowledge inefficiently exploits the connections between tasks. Therefore, we first propose a method for Reasoning-Oriented Locating and Editing (ROLE), which locates and edits the key modules of the language model for reasoning about event relations, enhancing interpretability and also resource-efficiently optimizing the reasoning ability. Subsequently, we propose a method for Analogy-Based Locating and Editing (ABLE), which efficiently exploits the similarities and differences between tasks to optimize the zero-shot reasoning capability. Experimental results show that ROLE improves interpretability and reasoning performance with reduced computational cost. ABLE achieves SOTA results in zero-shot reasoning.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.