Computer Science > Machine Learning
[Submitted on 18 Feb 2025
(v1)
, last revised 24 Sep 2025 (this version, v2)]
Title: Enhanced uncertainty quantification variational autoencoders for the solution of Bayesian inverse problems
Title: 用于贝叶斯反问题求解的增强不确定性量化变分自编码器
Abstract: Among other uses, neural networks are a powerful tool for solving deterministic and Bayesian inverse problems in real-time, where variational autoencoders, a specialized type of neural network, enable the Bayesian estimation of model parameters and their distribution from observational data allowing real-time inverse uncertainty quantification. In this work, we build upon existing research [Goh, H. et al., Proceedings of Machine Learning Research, 2022] by proposing a novel loss function to train variational autoencoders for Bayesian inverse problems. When the forward map is affine, we provide a theoretical proof of the convergence of the latent states of variational autoencoders to the posterior distribution of the model parameters. We validate this theoretical result through numerical tests and we compare the proposed variational autoencoder with the existing one in the literature both in terms of accuracy and generalization properties. Finally, we test the proposed variational autoencoder on a Laplace equation, with comparison to the original one and Markov Chains Monte Carlo.
Submission history
From: Andrea Tonini [view email][v1] Tue, 18 Feb 2025 18:17:49 UTC (7,259 KB)
[v2] Wed, 24 Sep 2025 06:58:30 UTC (3,376 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.