Mathematics > Analysis of PDEs
[Submitted on 28 Feb 2025
]
Title: Large-Time Asymptotics for Hyperbolic Systems with Non-Symmetric Relaxation: An Algorithmic Approach
Title: 具有非对称松弛的双曲系统的长时间渐近:一种算法方法
Abstract: We study the stability of one-dimensional linear hyperbolic systems with non-symmetric relaxation. Introducing a new frequency-dependent Kalman stability condition, we prove an abstract decay result underpinning a form of inhomogeneous hypocoercivity. In contrast with the homogeneous setting, the decay rates depend on how the Kalman condition is fulfilled and, in most cases, a loss of derivative occurs: one must assume an additional regularity assumption on the initial data to ensure the decay. Under structural assumptions, we refine our abstract result by providing an algorithm, of wide applicability, for the construction of Lyapunov functionals. This allows us to systematically establish decay estimates for a given system and uncover algebraic cancellations (beyond the reach of the Kalman-based approach) reducing the loss of derivatives in high frequencies. To demonstrate the applicability of our method, we derive new stability results for the Sugimoto model, which describes the propagation of nonlinear acoustic waves, and for a beam model of Timoshenko type with memory.
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.