Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2503.02596

Help | Advanced Search

Mathematics > Functional Analysis

arXiv:2503.02596 (math)
[Submitted on 4 Mar 2025 ]

Title: Derivations and Sobolev functions on extended metric-measure spaces

Title: 导数和扩展度量测度空间上的Sobolev函数

Authors:Enrico Pasqualetto, Janne Taipalus
Abstract: We investigate the first-order differential calculus over extended metric-topological measure spaces. The latter are quartets $\mathbb X=(X,\tau,{\sf d},\mathfrak m)$, given by an extended metric space $(X,{\sf d})$ together with a weaker topology $\tau$ (satisfying suitable compatibility conditions) and a finite Radon measure $\mathfrak m$ on $(X,\tau)$. The class of extended metric-topological measure spaces encompasses all metric measure spaces and many infinite-dimensional metric-measure structures, such as abstract Wiener spaces. In this framework, we study the following classes of objects: - The Banach algebra ${\rm Lip}_b(X,\tau,{\sf d})$ of bounded $\tau$-continuous ${\sf d}$-Lipschitz functions on $X$. - Several notions of Lipschitz derivations on $X$, defined in duality with ${\rm Lip}_b(X,\tau,{\sf d})$. - The metric Sobolev space $W^{1,p}(\mathbb X)$, defined in duality with Lipschitz derivations on $X$. Inter alia, we generalise both Weaver's and Di Marino's theories of Lipschitz derivations to the extended setting, and we discuss their connections. We also introduce a Sobolev space $W^{1,p}(\mathbb X)$ via an integration-by-parts formula, along the lines of Di Marino's notion of Sobolev space, and we prove its equivalence with other approaches, studied in the extended setting by Ambrosio, Erbar and Savar\'{e}. En route, we obtain some results of independent interest, among which are: - A Lipschitz-constant-preserving extension result for $\tau$-continuous ${\sf d}$-Lipschitz functions. - A novel and rather robust strategy for proving the equivalence of Sobolev-type spaces defined via an integration-by-parts formula and those obtained with a relaxation procedure. - A new description of an isometric predual of the metric Sobolev space $W^{1,p}(\mathbb X)$.
Abstract: 我们研究扩展度量-拓扑测度空间上的的一阶微分演算。 后者是由一个扩展度量空间$(X,{\sf d})$以及一种较弱的拓扑$\tau$(满足适当的兼容条件)和一个有限的Radon测度$\mathfrak m$在$(X,\tau)$上构成的四元组$\mathbb X=(X,\tau,{\sf d},\mathfrak m)$。 扩展度量-拓扑测度空间类包括所有度量测度空间和许多无限维的度量测度结构,例如抽象Wiener空间。 在这个框架中,我们研究以下对象类: - 有界$\tau$连续${\sf d}$-Lipschitz 函数在$X$上的巴拿赫代数${\rm Lip}_b(X,\tau,{\sf d})$。 - 几种关于${\rm Lip}_b(X,\tau,{\sf d})$对偶定义的$X$上的 Lipschitz 导出。 - 度量 Sobolev 空间$W^{1,p}(\mathbb X)$,在与$X$上的 Lipschitz 导数对偶中定义。 此外,我们还将 Weaver 和 Di Marino 的 Lipschitz 导数理论推广到扩展设置,并讨论它们之间的联系。 我们还通过一个分部积分公式引入了一个 Sobolev 空间$W^{1,p}(\mathbb X)$,沿着 Di Marino 的 Sobolev 空间的概念,并证明了它与其他方法的等价性,在扩展设置中由 Ambrosio、Erbar 和 Savaré 进行了研究。 在此过程中,我们获得了一些具有独立兴趣的结果,其中包括: - 一个保持 Lipschitz 常数的扩展结果,适用于$\tau$连续的${\sf d}$Lipschitz 函数。 - 一种新颖且相当稳健的策略,用于证明通过分部积分公式定义的 Sobolev 类空间与通过松弛过程得到的空间之间的等价性。 - 对度量 Sobolev 空间$W^{1,p}(\mathbb X)$的等距预共轭的一种新描述。
Comments: 43 pages
Subjects: Functional Analysis (math.FA) ; Analysis of PDEs (math.AP); Metric Geometry (math.MG)
MSC classes: 49J52, 46E35, 53C23, 46N10, 28C20
Cite as: arXiv:2503.02596 [math.FA]
  (or arXiv:2503.02596v1 [math.FA] for this version)
  https://doi.org/10.48550/arXiv.2503.02596
arXiv-issued DOI via DataCite

Submission history

From: Janne Taipalus [view email]
[v1] Tue, 4 Mar 2025 13:18:04 UTC (52 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
view license
Current browse context:
math.FA
< prev   |   next >
new | recent | 2025-03
Change to browse by:
math
math.AP
math.MG

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号