Mathematics > Numerical Analysis
[Submitted on 7 Mar 2025
(v1)
, last revised 30 Sep 2025 (this version, v3)]
Title: Exploiting Inexact Computations in Multilevel Monte Carlo and Other Sampling Methods
Title: 利用多级蒙特卡洛和其他采样方法中的不精确计算
Abstract: Multilevel sampling methods, such as multilevel and multifidelity Monte Carlo, multilevel stochastic collocation, or delayed acceptance Markov chain Monte Carlo, have become standard uncertainty quantification (UQ) tools for a wide class of forward and inverse problems. The underlying idea is to achieve faster convergence by leveraging a hierarchy of models, such as partial differential equation (PDE) or stochastic differential equation (SDE) discretisations with increasing accuracy. By optimally redistributing work among the levels, multilevel methods can achieve significant performance improvement compared to single level methods working with one high-fidelity model. Intuitively, approximate solutions on coarser levels can tolerate large computational error without affecting the overall accuracy. We show how this can be used in high-performance computing applications to obtain a significant performance gain. As a use case, we analyse the computational error in the standard multilevel Monte Carlo method and formulate an adaptive algorithm which determines a minimum required computational accuracy on each level of discretisation. We show two examples of how the inexactness can be converted into actual gains using an elliptic PDE with lognormal random coefficients. Using a low precision sparse direct solver combined with iterative refinement results in a simulated gain in memory references of up to $3.5\times$ compared to the reference double precision solver; while using a MINRES iterative solver, a practical speedup of up to $1.5\times$ in terms of FLOPs is achieved. These results provide a step in the direction of energy-aware scientific computing, with significant potential for energy savings.
Submission history
From: Josef Martínek [view email][v1] Fri, 7 Mar 2025 16:00:52 UTC (805 KB)
[v2] Wed, 19 Mar 2025 13:06:11 UTC (801 KB)
[v3] Tue, 30 Sep 2025 14:14:42 UTC (88 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.