Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > quant-ph > arXiv:2503.05906

Help | Advanced Search

Quantum Physics

arXiv:2503.05906 (quant-ph)
[Submitted on 7 Mar 2025 (v1) , last revised 21 Mar 2025 (this version, v2)]

Title: Bypassing orthogonalization in the quantum DPP sampler

Title: 在量子DPP采样器中绕过正交化

Authors:Michaël Fanuel, Rémi Bardenet
Abstract: Given an $n\times r$ matrix $X$ of rank $r$, consider the problem of sampling $r$ integers $\mathtt{C}\subset \{1, \dots, n\}$ with probability proportional to the squared determinant of the rows of $X$ indexed by $\mathtt{C}$. The distribution of $\mathtt{C}$ is called a projection determinantal point process (DPP). The vanilla classical algorithm to sample a DPP works in two steps, an orthogonalization in $\mathcal{O}(nr^2)$ and a sampling step of the same cost. The bottleneck of recent quantum approaches to DPP sampling remains that preliminary orthogonalization step. For instance, (Kerenidis and Prakash, 2022) proposed an algorithm with the same $\mathcal{O}(nr^2)$ orthogonalization, followed by a $\mathcal{O}(nr)$ classical step to find the gates in a quantum circuit. The classical $\mathcal{O}(nr^2)$ orthogonalization thus still dominates the cost. Our first contribution is to reduce preprocessing to normalizing the columns of $X$, obtaining $\mathsf{X}$ in $\mathcal{O}(nr)$ classical operations. We show that a simple circuit inspired by the formalism of Kerenidis et al., 2022 samples a DPP of a type we had never encountered in applications, which is different from our target DPP. Plugging this circuit into a rejection sampling routine, we recover our target DPP after an expected $1/\det \mathsf{X}^\top\mathsf{X} = 1/a$ preparations of the quantum circuit. Using amplitude amplification, our second contribution is to boost the acceptance probability from $a$ to $1-a$ at the price of a circuit depth of $\mathcal{O}(r\log n/\sqrt{a})$ and $\mathcal{O}(\log n)$ extra qubits. Prepending a fast, sketching-based classical approximation of $a$, we obtain a pipeline to sample a projection DPP on a quantum computer, where the former $\mathcal{O}(nr^2)$ preprocessing bottleneck has been replaced by the $\mathcal{O}(nr)$ cost of normalizing the columns and the cost of our approximation of $a$.
Abstract: 给定一个秩为$r$的$n\times r$矩阵$X$,考虑采样$r$个整数$\mathtt{C}\subset \{1, \dots, n\}$的问题,其概率与由$\mathtt{C}$索引的$X$行的平方行列式成比例。 $\mathtt{C}$的分布被称为投影行列式点过程(DPP)。 经典的采样DPP的算法分为两步,在$\mathcal{O}(nr^2)$中进行正交化,然后进行相同成本的采样步骤。 最近量子方法在DPP采样中的瓶颈仍然是最初的正交化步骤。 例如,(Kerenidis和Prakash, 2022) 提出了一种算法,具有相同的$\mathcal{O}(nr^2)$正交化,然后进行$\mathcal{O}(nr)$的经典步骤以在量子电路中找到门。 因此,经典的$\mathcal{O}(nr^2)$正交化仍然主导着成本。 我们第一个贡献是将预处理减少到归一化$X$的列,得到$\mathsf{X}$在$\mathcal{O}(nr)$经典操作中。 我们表明,一个受 Kerenidis 等人,2022 年形式主义启发的简单电路采样了一种我们在应用中从未遇到过的 DPP,这与我们的目标 DPP 不同。 将此电路插入拒绝采样过程后,我们在预期$1/\det \mathsf{X}^\top\mathsf{X} = 1/a$次量子电路准备后恢复了我们的目标 DPP。 使用幅度放大,我们的第二个贡献是在电路深度为$\mathcal{O}(r\log n/\sqrt{a})$且额外需要$\mathcal{O}(\log n)$个量子比特的代价下,将接受概率从$a$提高到$1-a$。 在对$a$进行快速的基于草图的经典近似之前,我们获得了一个在量子计算机上采样投影DPP的流程,其中之前的$\mathcal{O}(nr^2)$预处理瓶颈已被$\mathcal{O}(nr)$的列归一化成本以及我们对$a$的近似成本所取代。
Comments: 44 pages, 16 figures. Minor corrections and details about the sketching cost
Subjects: Quantum Physics (quant-ph) ; Machine Learning (cs.LG); Computation (stat.CO)
Cite as: arXiv:2503.05906 [quant-ph]
  (or arXiv:2503.05906v2 [quant-ph] for this version)
  https://doi.org/10.48550/arXiv.2503.05906
arXiv-issued DOI via DataCite

Submission history

From: Michaël Fanuel [view email]
[v1] Fri, 7 Mar 2025 19:57:39 UTC (1,033 KB)
[v2] Fri, 21 Mar 2025 08:46:34 UTC (1,035 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
view license
Current browse context:
quant-ph
< prev   |   next >
new | recent | 2025-03
Change to browse by:
cs
cs.LG
stat
stat.CO

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号