Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2504.00980

Help | Advanced Search

Mathematics > Operator Algebras

arXiv:2504.00980 (math)
[Submitted on 1 Apr 2025 ]

Title: Simplicity of Cuntz-Pimsner algebras of quantum graphs

Title: 量子图的Cuntz-Pimsner代数的简单性

Authors:Mitch Hamidi, Lara Ismert, Brent Nelson
Abstract: Let $\mathcal{G}$ be a quantum graph without quantum sources and $E_\mathcal{G}$ be the quantum edge correspondence for $\mathcal{G}.$ Our main results include sufficient conditions for simplicity of the Cuntz-Pimsner algebra $\mathcal{O}_{E_\mathcal{G}}$ in terms of $\mathcal{G}$ and for defining a surjection from the quantum Cuntz-Krieger algebra $\mathcal{O}(\mathcal{G})$ onto a particular relative Cuntz-Pimsner algebra for $E_\mathcal{G}$. As an application of these two results, we give the first example of a quantum graph with distinct quantum Cuntz-Krieger and local quantum Cuntz-Krieger algebras. We also characterize simplicity of $\mathcal{O}_{E_\mathcal{G}}$ for some fundamental examples of quantum graphs, including rank-one quantum graphs on a single full matrix algebra, complete quantum graphs, and trivial quantum graphs. Along the way, we provide an equivalent condition for minimality of $E_\mathcal{G}$ and sufficient conditions for aperiodicity of $E_\mathcal{G}$ in terms of the underlying quantum graph $\mathcal{G}$.
Abstract: 设 $\mathcal{G}$ 是一个没有量子源的量子图,$E_\mathcal{G}$ 是 $\mathcal{G}.$ 的量子边对应关系。我们的主要结果包括关于 $\mathcal{O}_{E_\mathcal{G}}$ 的简单性的一些充分条件,这些条件依赖于 $\mathcal{G}$,以及定义从量子 Cuntz-Krieger 代数 $\mathcal{O}(\mathcal{G})$ 到特定相对 Cuntz-Pimsner 代数的一个满射的条件,该代数与 $E_\mathcal{G}$ 相关。 作为这两个结果的应用,我们给出了第一个具有不同量子 Cuntz-Krieger 和局部量子 Cuntz-Krieger 代数的量子图的例子。 我们还刻画了某些基本量子图的简单性,包括秩一量子图(作用于单个全矩阵代数)、完全量子图和平凡量子图中的$\mathcal{O}_{E_\mathcal{G}}$。 在此过程中,我们给出了$E_\mathcal{G}$最小性的等价条件,并提供了基于底层量子图$\mathcal{G}$的$E_\mathcal{G}$非周期性的充分条件。
Comments: 18 pages
Subjects: Operator Algebras (math.OA)
MSC classes: 46L89, 81P40
Cite as: arXiv:2504.00980 [math.OA]
  (or arXiv:2504.00980v1 [math.OA] for this version)
  https://doi.org/10.48550/arXiv.2504.00980
arXiv-issued DOI via DataCite

Submission history

From: Lara Ismert [view email]
[v1] Tue, 1 Apr 2025 17:17:44 UTC (22 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
math.OA
< prev   |   next >
new | recent | 2025-04
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号