Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > astro-ph > arXiv:2504.01232

Help | Advanced Search

Astrophysics > Astrophysics of Galaxies

arXiv:2504.01232 (astro-ph)
[Submitted on 1 Apr 2025 ]

Title: A machine-learning photometric classifier for massive stars in nearby galaxies II. The catalog

Title: 银河系附近大质量恒星的机器学习测光分类器。II. 目录

Authors:G. Maravelias, A. Z. Bonanos, K. Antoniadis, G. Munoz-Sanchez, E. Christodoulou, S. de Wit, E. Zapartas, K. Kovlakas, F. Tramper, P. Bonfini, S. Avgousti
Abstract: Mass loss is a key aspect of stellar evolution, particularly in evolved massive stars, yet episodic mass loss remains poorly understood. To investigate this, we need evolved massive stellar populations across various galactic environments. However, spectral classifications are challenging to obtain in large numbers, especially for distant galaxies. We addressed this by leveraging machine-learning techniques. We combined \textit{Spitzer} photometry and Pan-STARRS1 optical data to classify point sources in 26 galaxies within 5 Mpc, and a metallicity range 0.07-1.36 Z$_\odot$. \textit{Gaia} DR3 astrometry was used to remove foreground sources. Classifications are derived using a machine-learning model developed by Maravelias et al. (2022). We report classifications for 1,147,650 sources, with 276,657 sources ($\sim24\%$) being robust. Among these are 120,479 Red Supergiants (RSGs; $\sim11\%$). The classifier performs well even at low metallicities ($\sim0.1$ Z$_\odot$) and distances under 1.5 Mpc, with a slight decrease in accuracy beyond $\sim3$ Mpc due to \textit{Spitzer}'s resolution limits. We also identified 21 luminous RSGs ($\textrm{log}(L/L_\odot)\ge5.5$), 159 dusty Yellow Hypergiants in M31 and M33, as well as 6 extreme RSGs ($\textrm{log}(L/L_\odot)\ge6$) in M31, challenging observed luminosity limits. Class trends with metallicity align with expectations, though biases exist. This catalog serves as a valuable resource for individual-object studies and \textit{James Webb} Space Telescope target selection. It enables follow-up on luminous RSGs and Yellow Hypergiants to refine our understanding of their evolutionary pathways. Additionally, we provide the largest spectroscopically confirmed catalog of massive stars and candidates to date, comprising 5,273 sources (including $\sim330$ other objects).
Abstract: 质量损失是恒星演化的一个关键方面,特别是在演化的大质量恒星中,但间歇性质量损失仍然知之甚少。为了研究这一问题,我们需要各种银河环境中演化的巨大恒星群体。然而,大量获得光谱分类具有挑战性,尤其是对于遥远的星系。我们通过利用机器学习技术解决了这个问题。我们将\textit{斯皮策}光度学和 Pan-STARRS1 光学数据相结合,用于分类 5 兆秒差距内 26 个星系中的点源,并且金属丰度范围为 0.07-1.36 Z$_\odot$。使用由 Maravelias 等人(2022)开发的机器学习模型,并结合\textit{盖亚}DR3 天文测量数据去除了前景源。我们使用 Maravelias 等人开发的机器学习模型来得出分类结果。我们报告了 1,147,650 个源的分类,其中 276,657 个源($\sim24\%$)是可靠的。其中包括 120,479 颗红超巨星(RSGs;$\sim11\%$)。 分类器即使在金属丰度较低($\sim0.1$Z$_\odot$)和距离小于1.5 Mpc的情况下也表现良好,在超过$\sim3$Mpc时由于\textit{斯皮策}的分辨率限制,准确率略有下降。 我们还确定了21颗明亮的红超巨星($\textrm{log}(L/L_\odot)\ge5.5$)、159颗M31和M33中的尘埃包裹黄超巨星,以及M31中的6颗极端红超巨星($\textrm{log}(L/L_\odot)\ge6$),这些恒星挑战了观测到的光度极限。 金属丰度与分类趋势与预期一致,尽管存在偏差。 该目录为单个目标的研究和\textit{詹姆斯·韦布}空间望远镜的目标选择提供了宝贵的资源。 它使我们能够进一步研究明亮的红超巨星和黄超巨星,以完善对其演化路径的理解。 此外,我们提供了迄今为止最大的具有光谱确认的 massive 星星和候选星星表,包括 5,273 个源(包括 $\sim330$ 其他对象)。
Comments: 23 pages, 6 figures, 10 tables; submitted to A&A
Subjects: Astrophysics of Galaxies (astro-ph.GA) ; Solar and Stellar Astrophysics (astro-ph.SR)
Cite as: arXiv:2504.01232 [astro-ph.GA]
  (or arXiv:2504.01232v1 [astro-ph.GA] for this version)
  https://doi.org/10.48550/arXiv.2504.01232
arXiv-issued DOI via DataCite

Submission history

From: Grigoris Maravelias [view email]
[v1] Tue, 1 Apr 2025 22:44:45 UTC (808 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
astro-ph.GA
< prev   |   next >
new | recent | 2025-04
Change to browse by:
astro-ph
astro-ph.SR

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号