Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > astro-ph > arXiv:2504.04695

Help | Advanced Search

Astrophysics > High Energy Astrophysical Phenomena

arXiv:2504.04695 (astro-ph)
[Submitted on 7 Apr 2025 (v1) , last revised 14 Apr 2025 (this version, v2)]

Title: Novel Polarimetric Analysis of Near Horizon Flaring Episodes in M87* in Millimeter Wavelength

Title: M87*毫米波段近地平线闪光事件的新极化分析

Authors:Razieh Emami, Matthew Liska, Koushik Chatterjee, Geoffrey C. Bower, Wystan Benbow, Douglas Finkbeiner, Maciek Wielgus, Lars Hernquist, Randall Smith, Grant Tremblay, Angelo Ricarte, James F. Steiner, Avery E. Broderick, Saurabh, Jordy Davelaar, Josh Grindlay, Mark Vogelsberger, Chi-Kwan Chan
Abstract: Recent multi-wavelength observations of M87* \citep{2024A&A...692A.140A} revealed a high-energy $\gamma$-ray flare without a corresponding millimeter counterpart. We present a theoretical polarimetric study to evaluate the presence and nature of a potential millimeter flare in M87*, using a suite of general relativistic magnetohydrodynamical simulations with varying black hole (BH) spins and magnetic field configurations. We find that the emergence of a millimeter flare is strongly influenced by both spin and magnetic structure, with limited sensitivity to the electron distribution (thermal vs. non-thermal). We model the intensity light curve with a damped random walk (DRW) and compare the characteristic timescale ($\tau$) with recent SMA observations, finding that the simulated $\tau$ exceeds observed values by over an order of magnitude. In a flaring case with BH spin a=+0.5, we identify a distinct millimeter flare followed by an order-of-magnitude flux drop. All Stokes parameters show variability near the flare, including a sign reversal in the electric vector position angle. While most $\beta_m$ modes remain stable, the $EB$-correlation phase is highly sensitive to both the flare peak and decay. We examine polarimetric signatures in photon sub-rings, focusing on modes ns=0 and ns=1. The ns=0 signal closely matches the full image, while ns=1 reveals distinct behaviors, highlighting the potential of space VLBI to isolate sub-ring features. Finally, we analyze the magnetic and velocity field evolution during the flare, finding that magnetic reconnection weakens during the flux decay, and the clockwise velocity flow transitions into an outflow-dominated regime. These results suggest that transient radio variability near flares encodes key information about black hole spin and magnetic field structure, offering a novel probe into the physics of active galactic nuclei.
Abstract: Recent multi-wavelength observations of M87* \citep{2024A&A...692A.140A} revealed a high-energy $\gamma$-ray flare without a corresponding millimeter counterpart. We present a theoretical polarimetric study to evaluate the presence and nature of a potential millimeter flare in M87*, using a suite of general relativistic magnetohydrodynamical simulations with varying black hole (BH) spins and magnetic field configurations. We find that the emergence of a millimeter flare is strongly influenced by both spin and magnetic structure, with limited sensitivity to the electron distribution (thermal vs. non-thermal). We model the intensity light curve with a damped random walk (DRW) and compare the characteristic timescale ($\tau$) with recent SMA observations, finding that the simulated $\tau$ exceeds observed values by over an order of magnitude. In a flaring case with BH spin a=+0.5, we identify a distinct millimeter flare followed by an order-of-magnitude flux drop. All Stokes parameters show variability near the flare, including a sign reversal in the electric vector position angle. While most $\beta_m$ modes remain stable, the $EB$-correlation phase is highly sensitive to both the flare peak and decay. We examine polarimetric signatures in photon sub-rings, focusing on modes ns=0 and ns=1. The ns=0 signal closely matches the full image, while ns=1 reveals distinct behaviors, highlighting the potential of space VLBI to isolate sub-ring features. Finally, we analyze the magnetic and velocity field evolution during the flare, finding that magnetic reconnection weakens during the flux decay, and the clockwise velocity flow transitions into an outflow-dominated regime. These results suggest that transient radio variability near flares encodes key information about black hole spin and magnetic field structure, offering a novel probe into the physics of active galactic nuclei.
Comments: 24 pages, 23 figures
Subjects: High Energy Astrophysical Phenomena (astro-ph.HE) ; Astrophysics of Galaxies (astro-ph.GA); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th)
Cite as: arXiv:2504.04695 [astro-ph.HE]
  (or arXiv:2504.04695v2 [astro-ph.HE] for this version)
  https://doi.org/10.48550/arXiv.2504.04695
arXiv-issued DOI via DataCite

Submission history

From: Razieh Emami Meibody [view email]
[v1] Mon, 7 Apr 2025 03:00:21 UTC (43,683 KB)
[v2] Mon, 14 Apr 2025 17:37:12 UTC (43,682 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
astro-ph.HE
< prev   |   next >
new | recent | 2025-04
Change to browse by:
astro-ph
astro-ph.GA
hep-ph
hep-th

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号