Physics > Fluid Dynamics
[Submitted on 28 Apr 2025
]
Title: The Diffuse Solid Method for Wetting and Multiphase Fluid Simulations in Complex Geometries
Title: 复杂几何形状下润湿和多相流体模拟的弥散固体方法
Abstract: We develop a diffuse solid method that is versatile and accurate for modeling wetting and multiphase flows in highly complex geometries. In this scheme, we harness N + 1-component phase field models to investigate interface shapes and flow dynamics of N fluid components, and we optimize how to constrain the evolution of the component employed as the solid phase to conform to any pre-defined geometry. Implementations for phase field energy minimization and lattice Boltzmann method are presented. Our approach does not need special treatment for the fluid-solid wetting boundary condition, which makes it simple to implement. To demonstrate its broad applicability, we employ the diffuse solid method to explore wide-ranging examples, including droplet contact angle on a flat surface, particle adsorption on a fluid-fluid interface, critical pressure on micropillars and on Salvinia leaf structures, capillary rise against gravity, Lucas-Washburn's law for capillary filling, and droplet motion on a sinusoidally undulated surface. Our proposed approach can be beneficial to computationally study multiphase fluid interactions with textured solid surfaces that are ubiquitous in nature and engineering applications.
Current browse context:
physics.flu-dyn
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.