Physics > Fluid Dynamics
[Submitted on 8 May 2025
(v1)
, last revised 3 Oct 2025 (this version, v2)]
Title: Dynamics of a compressible gas injected into a confined porous layer
Title: 可压缩气体注入受限多孔层中的动力学
Abstract: Underground gas storage is a critical technology in global efforts to mitigate climate change. In particular, hydrogen storage offers a promising solution for integrating renewable energy into the power grid. When injected into the subsurface, hydrogen's low viscosity compared to the resident brine causes a bubble of hydrogen trapped beneath caprock to spread rapidly into an aquifer through release of a thin gas layer above the brine, complicating recovery. In long aquifers, the large viscous pressure drop between source and outlet induces significant pressure variations, potentially leading to substantial density changes in the injected gas. To examine the role of gas compressibility in the spreading dynamics, we use long-wave theory to derive coupled nonlinear evolution equations for the gas pressure and gas/liquid interface height, focusing on the limit of long domains, weak gas compressibility and low gas/liquid viscosity ratio. Simulations are supplemented with a comprehensive asymptotic analysis of parameter regimes. Unlike the near-incompressible limit, in which gas spreading rates are dictated by the source strength and viscosity ratio, and compressive effects are transient, we show how compression of the main gas bubble can generate dynamic pressure changes that are coupled to those in the thin gas layer that spreads over the liquid, with compressive effects having a sustained influence along the layer. This coupling allows compressibility to reduce spreading rates and gas pressures. We characterise this behaviour via a set of low-order models that reveal dominant scalings, highlighting the role of compressibility in mediating the evolution of the gas layer.
Submission history
From: Peter Castellucci [view email][v1] Thu, 8 May 2025 16:52:26 UTC (3,870 KB)
[v2] Fri, 3 Oct 2025 19:27:05 UTC (3,868 KB)
Current browse context:
physics.flu-dyn
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.