Computer Science > Robotics
[Submitted on 31 May 2025
(v1)
, revised 11 Sep 2025 (this version, v3)
, latest version 21 Sep 2025 (v4)
]
Title: Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
Title: 用于嗅觉传感器和数据集鲁棒性的扩散图神经网络
Abstract: Robotic odour source localization (OSL) is a critical capability for autonomous systems operating in complex environments. However, current OSL methods often suffer from ambiguities, particularly when robots misattribute odours to incorrect objects due to limitations in olfactory datasets and sensor resolutions. To address this challenge, we introduce a novel machine learning method using diffusion-based molecular generation to enhance odour localization accuracy that can be used by itself or with automated olfactory dataset construction pipelines. This generative process of our diffusion model expands the chemical space beyond the limitations of both current olfactory datasets and training methods, enabling the identification of potential odourant molecules not previously documented. The generated molecules can then be more accurately validated using advanced olfactory sensors, enabling them to detect more compounds and inform better hardware design. By integrating visual analysis, language processing, and molecular generation, our framework enhances the ability of olfaction-vision models on robots to accurately associate odours with their correct sources, thereby improving navigation and decision-making through better sensor selection for a target compound in critical applications such as explosives detection, narcotics screening, and search and rescue. Our methodology represents a foundational advancement in the field of artificial olfaction, offering a scalable solution to challenges posed by limited olfactory data and sensor ambiguities. Code and data are made available to the community at the following URL: https://github.com/KordelFranceTech/OlfactionVisionLanguage-Dataset.
Submission history
From: Kordel France [view email][v1] Sat, 31 May 2025 08:22:09 UTC (5,388 KB)
[v2] Sun, 15 Jun 2025 01:39:21 UTC (1,795 KB)
[v3] Thu, 11 Sep 2025 03:02:39 UTC (1,859 KB)
[v4] Sun, 21 Sep 2025 03:08:57 UTC (3,993 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.