Computer Science > Machine Learning
[Submitted on 5 Aug 2025
]
Title: Minimal Convolutional RNNs Accelerate Spatiotemporal Learning
Title: 最小卷积RNN加速时空学习
Abstract: We introduce MinConvLSTM and MinConvGRU, two novel spatiotemporal models that combine the spatial inductive biases of convolutional recurrent networks with the training efficiency of minimal, parallelizable RNNs. Our approach extends the log-domain prefix-sum formulation of MinLSTM and MinGRU to convolutional architectures, enabling fully parallel training while retaining localized spatial modeling. This eliminates the need for sequential hidden state updates during teacher forcing - a major bottleneck in conventional ConvRNN models. In addition, we incorporate an exponential gating mechanism inspired by the xLSTM architecture into the MinConvLSTM, which further simplifies the log-domain computation. Our models are structurally minimal and computationally efficient, with reduced parameter count and improved scalability. We evaluate our models on two spatiotemporal forecasting tasks: Navier-Stokes dynamics and real-world geopotential data. In terms of training speed, our architectures significantly outperform standard ConvLSTMs and ConvGRUs. Moreover, our models also achieve lower prediction errors in both domains, even in closed-loop autoregressive mode. These findings demonstrate that minimal recurrent structures, when combined with convolutional input aggregation, offer a compelling and efficient alternative for spatiotemporal sequence modeling, bridging the gap between recurrent simplicity and spatial complexity.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.