Computer Science > Machine Learning
[Submitted on 7 Aug 2025
]
Title: DFW: A Novel Weighting Scheme for Covariate Balancing and Treatment Effect Estimation
Title: DFW:一种用于协变量平衡和处理效应估计的新加权方案
Abstract: Estimating causal effects from observational data is challenging due to selection bias, which leads to imbalanced covariate distributions across treatment groups. Propensity score-based weighting methods are widely used to address this issue by reweighting samples to simulate a randomized controlled trial (RCT). However, the effectiveness of these methods heavily depends on the observed data and the accuracy of the propensity score estimator. For example, inverse propensity weighting (IPW) assigns weights based on the inverse of the propensity score, which can lead to instable weights when propensity scores have high variance-either due to data or model misspecification-ultimately degrading the ability of handling selection bias and treatment effect estimation. To overcome these limitations, we propose Deconfounding Factor Weighting (DFW), a novel propensity score-based approach that leverages the deconfounding factor-to construct stable and effective sample weights. DFW prioritizes less confounded samples while mitigating the influence of highly confounded ones, producing a pseudopopulation that better approximates a RCT. Our approach ensures bounded weights, lower variance, and improved covariate balance.While DFW is formulated for binary treatments, it naturally extends to multi-treatment settings, as the deconfounding factor is computed based on the estimated probability of the treatment actually received by each sample. Through extensive experiments on real-world benchmark and synthetic datasets, we demonstrate that DFW outperforms existing methods, including IPW and CBPS, in both covariate balancing and treatment effect estimation.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.