Computer Science > Computer Vision and Pattern Recognition
            [Submitted on 28 Aug 2025
            
             (v1)
            
            
              , last revised 11 Sep 2025 (this version, v2)]
          
          Title: Deep Learning Framework for Early Detection of Pancreatic Cancer Using Multi-Modal Medical Imaging Analysis
Title: 用于利用多模态医学影像分析进行胰腺癌早期检测的深度学习框架
Abstract: Pacreatic ductal adenocarcinoma (PDAC) remains one of the most lethal forms of cancer, with a five-year survival rate below 10% primarily due to late detection. This research develops and validates a deep learning framework for early PDAC detection through analysis of dual-modality imaging: autofluorescence and second harmonic generation (SHG). We analyzed 40 unique patient samples to create a specialized neural network capable of distinguishing between normal, fibrotic, and cancerous tissue. Our methodology evaluated six distinct deep learning architectures, comparing traditional Convolutional Neural Networks (CNNs) with modern Vision Transformers (ViTs). Through systematic experimentation, we identified and overcome significant challenges in medical image analysis, including limited dataset size and class imbalance. The final optimized framework, based on a modified ResNet architecture with frozen pre-trained layers and class-weighted training, achieved over 90% accuracy in cancer detection. This represents a significant improvement over current manual analysis methods an demonstrates potential for clinical deployment. This work establishes a robust pipeline for automated PDAC detection that can augment pathologists' capabilities while providing a foundation for future expansion to other cancer types. The developed methodology also offers valuable insights for applying deep learning to limited-size medical imaging datasets, a common challenge in clinical applications.
Submission history
From: Amir Kordijazi [view email][v1] Thu, 28 Aug 2025 15:07:04 UTC (2,204 KB)
[v2] Thu, 11 Sep 2025 16:54:03 UTC (1,898 KB)
References & Citations
Bibliographic and Citation Tools
            Bibliographic Explorer (What is the Explorer?)
          
        
            Connected Papers (What is Connected Papers?)
          
        
            Litmaps (What is Litmaps?)
          
        
            scite Smart Citations (What are Smart Citations?)
          
        Code, Data and Media Associated with this Article
            alphaXiv (What is alphaXiv?)
          
        
            CatalyzeX Code Finder for Papers (What is CatalyzeX?)
          
        
            DagsHub (What is DagsHub?)
          
        
            Gotit.pub (What is GotitPub?)
          
        
            Hugging Face (What is Huggingface?)
          
        
            Papers with Code (What is Papers with Code?)
          
        
            ScienceCast (What is ScienceCast?)
          
        Demos
Recommenders and Search Tools
              Influence Flower (What are Influence Flowers?)
            
          
              CORE Recommender (What is CORE?)
            
          
              IArxiv Recommender
              (What is IArxiv?)
            
          arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
 
  