Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2509.00165

Help | Advanced Search

Mathematics > Algebraic Geometry

arXiv:2509.00165 (math)
[Submitted on 29 Aug 2025 ]

Title: Strata of Ecological Coexistence via Grassmannians

Title: 通过格拉斯曼的生态共存层

Authors:Türkü Özlüm Çelik, Pierre A. Haas, Georgy Scholten, Kexin Wang, Giulio Zucal
Abstract: We study the Lotka--Volterra system from the perspective of computational algebraic geometry, focusing on equilibria that are both feasible and stable. These conditions stratifies the parameter space in $\mathbb{R}\times\mathbb{R}^{n\times n}$ with the feasible-stable semialgebraic sets. We encode them on the real Grassmannian ${\rm Gr}_{\mathbb{R}}(n,2n)$ via a parameter matrix representation, and use oriented matroid theory to develop an algorithm, combining Grassmann--Pl{\"u}cker relations with branching under feasibility and stability constraints. This symbolic approach determines whether a given sign pattern in the parameter space $\mathbb{R}\times\mathbb{R}^{n\times n}$ admits a consistent extension to Pl{\"u}cker coordinates. As an application, we establish the impossibility of certain interaction networks, showing that the corresponding patterns admit no such extension satisfying feasibility and stability conditions, through an effective implementation. We complement these results using numerical nonlinear algebra with \texttt{HypersurfaceRegions.jl} to decompose the parameter space and detect rare feasible-stable sign patterns.
Abstract: 我们从计算代数几何的角度研究Lotka--Volterra系统,重点关注既可行又稳定的平衡点。 这些条件将参数空间分层为$\mathbb{R}\times\mathbb{R}^{n\times n}$中的可行稳定半代数集。 我们将它们通过参数矩阵表示编码到实格拉斯曼流形${\rm Gr}_{\mathbb{R}}(n,2n)$上,并利用定向拟阵理论开发一种算法,结合格拉斯曼--普吕克关系与可行性和稳定性约束下的分支。 这种符号方法可以确定参数空间中给定的符号模式$\mathbb{R}\times\mathbb{R}^{n\times n}$是否可以一致扩展为普吕克坐标。 作为应用,我们证明了某些相互作用网络是不可能的,表明相应的模式无法满足可行性和稳定性条件的扩展,通过有效的实现来展示这一点。 我们使用数值非线性代数与\texttt{超曲面区域.jl}相结合,对参数空间进行分解并检测罕见的可行稳定符号模式。
Subjects: Algebraic Geometry (math.AG)
Cite as: arXiv:2509.00165 [math.AG]
  (or arXiv:2509.00165v1 [math.AG] for this version)
  https://doi.org/10.48550/arXiv.2509.00165
arXiv-issued DOI via DataCite

Submission history

From: Türkü Özlüm Çelik [view email]
[v1] Fri, 29 Aug 2025 18:05:55 UTC (30 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
math.AG
< prev   |   next >
new | recent | 2025-09
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号