Physics > Optics
[Submitted on 3 Sep 2025
]
Title: Four-channel Imaging Based on Reconfigurable Metasurfaces: Hyperchaotic Encryption under Physical Protection
Title: 基于可重构超表面的四通道成像:物理保护下的超混沌加密
Abstract: Metasurfaces facilitate high-capacity optical information integration by simultaneously supporting near-field nanoprinting and far-field holography on a single platform. However, conventional multi-channel designs face critical security vulnerabilities for sensitive information due to insufficient encryption mechanisms. In this work, we propose a four-channel phase-change metasurface featuring algorithm-physical co-security-a dual-protection framework combining intrinsic metasurface physical security with chaotic encryption. Our polarization-multiplexed metasurface generates four optical imaging channels through meta-atom design, including two far-field holograms and two near-field patterns. To enhance system security, we apply Chen hyperchaotic encryption combined with the Logistic map and DNA encoding to convert near-field information into secure QR codes; far-field holograms are retained to demonstrate the metasurface's information capacity and for attack detection. Phase-change metasurface further provides physical-layer security by dynamically switching imaging channels via crystalline-to-amorphous state transitions, enhancing anti-counterfeiting and reliability. The proposed metasurface achieves high-fidelity imaging, robust anti-attack performance, and independent channel control. This integrated approach pioneers a secure paradigm for high-density optical information processing.
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.