Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2509.04978

Help | Advanced Search

Mathematics > Number Theory

arXiv:2509.04978 (math)
[Submitted on 5 Sep 2025 ]

Title: On the Quadratic Structure of Torsors over Affine Group Schemes

Title: 关于仿射群概形上扭子的二次结构

Authors:Philippe Cassou-Noguès, Martin J. Taylor (with an appendix of Dajano Tossici)
Abstract: Let $\mathcal{G}=\mathrm{Spec}(A)$ be a finite and flat group scheme over the ring of algebraic integers $R$ of a number field $K$ and suppose that the generic fiber of $\mathcal{G}$ is the constant group scheme over $K$ for a finite group $G$. Then the $R$-dual $A^D$of $A$ identifies as a Hopf $R$-order in the group algebra $K[G]$. If $B$ is a principal homogeneous space for $A$, then it is known that $B$ is a locally free $A^D$-module. By multiplying the trace form of $B_K/K$ by a certain scalar we obtain a $G$-invariant form $Tr'_B$ which provides a non-degenerate $R$-form on $B$. If $G$ has odd order, we show that the $G$-forms $(B, Tr'_B)$ and $(A, Tr'_A)$ are locally isomorphic and we study the question of when they are globally isomorphic. Suppose now that $K$ is a finite extension of $\mathbb Q_p$ with valuation ring $R$. In the course of our study we are led to consider the extension of scalars map $\varphi_K: G_0(A^D)\rightarrow G_0(A^D_K)=G_0(K[G])$. When $A^D$ is the group ring $R[G]$, Swan showed that $\varphi_K$ is an isomorphism. Jensen and Larson proved that $\varphi_K$ is also an isomorphism for any Hopf $R$-order $A^D$ of $K[G]$ when $G$ is abelian and $K$ is large enough. Here we prove that $\ker \varphi_K$ is at most a finite abelian $p$-group. However, numerous examples lead us to conjecture that Swan's result extends to all Hopf $R$-orders in $K[G]$, i.e. $\ker \varphi_K$ is always trivial.
Abstract: 设 $\mathcal{G}=\mathrm{Spec}(A)$ 是数域 $K$ 的代数整数环 $R$ 上的有限且平坦的群概形,并且假设 $\mathcal{G}$ 的一般纤维是有限群 $G$ 在 $K$ 上的常数群概形。 然后,$R$-对偶$A^D$的$A$被识别为群代数$K[G]$中的一个霍普夫$R$-阶。 如果$B$是$A$的主齐次空间,那么已知$B$是一个局部自由的$A^D$模块。 通过将$B_K/K$的迹形式乘以某个标量,我们得到一个$G$-不变形式$Tr'_B$,它在$B$上提供了一个非退化的$R$-形式。 如果$G$的阶是奇数,我们证明了$G$-形式$(B, Tr'_B)$和$(A, Tr'_A)$是局部同构的,并我们研究它们何时全局同构的问题。 现在假设$K$是$\mathbb Q_p$的有限扩张,其赋值环为$R$。 在我们的研究过程中,我们考虑了标量扩展映射$\varphi_K: G_0(A^D)\rightarrow G_0(A^D_K)=G_0(K[G])$。当$A^D$是群环$R[G]$时,Swan 表明$\varphi_K$是一个同构。 Jensen 和 Larson 证明了当 $G$ 是阿贝尔的且 $K$ 足够大时,对于任何霍普夫 $R$-阶 $A^D$ 的 $K[G]$, $\varphi_K$ 也是同构。 这里我们证明$\ker \varphi_K$最多是一个有限交换$p$-群。 然而,许多例子使我们猜想斯旺的结果可以推广到$K[G]$中的所有霍普夫$R$-阶,即 $\ker \varphi_K$总是平凡的。
Subjects: Number Theory (math.NT) ; Algebraic Geometry (math.AG)
MSC classes: 11E81, 16G30
Cite as: arXiv:2509.04978 [math.NT]
  (or arXiv:2509.04978v1 [math.NT] for this version)
  https://doi.org/10.48550/arXiv.2509.04978
arXiv-issued DOI via DataCite

Submission history

From: Philippe Cassou-Noguès [view email]
[v1] Fri, 5 Sep 2025 10:03:59 UTC (70 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
math.NT
< prev   |   next >
new | recent | 2025-09
Change to browse by:
math
math.AG

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号