Electrical Engineering and Systems Science > Systems and Control
[Submitted on 14 Sep 2025
]
Title: BERT4beam: Large AI Model Enabled Generalized Beamforming Optimization
Title: BERT4beam:大型人工智能模型支持的广义波束成形优化
Abstract: Artificial intelligence (AI) is anticipated to emerge as a pivotal enabler for the forthcoming sixth-generation (6G) wireless communication systems. However, current research efforts regarding large AI models for wireless communications primarily focus on fine-tuning pre-trained large language models (LLMs) for specific tasks. This paper investigates the large-scale AI model designed for beamforming optimization to adapt and generalize to diverse tasks defined by system utilities and scales. We propose a novel framework based on bidirectional encoder representations from transformers (BERT), termed BERT4beam. We aim to formulate the beamforming optimization problem as a token-level sequence learning task, perform tokenization of the channel state information, construct the BERT model, and conduct task-specific pre-training and fine-tuning strategies. Based on the framework, we propose two BERT-based approaches for single-task and multi-task beamforming optimization, respectively. Both approaches are generalizable for varying user scales. Moreover, the former can adapt to varying system utilities and antenna configurations by re-configuring the input and output module of the BERT model, while the latter, termed UBERT, can directly generalize to diverse tasks, due to a finer-grained tokenization strategy. Extensive simulation results demonstrate that the two proposed approaches can achieve near-optimal performance and outperform existing AI models across various beamforming optimization tasks, showcasing strong adaptability and generalizability.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.