Mathematics > Analysis of PDEs
[Submitted on 14 Sep 2025
]
Title: On a class of thin obstacle-type problems for the bi-Laplacian operator
Title: 关于双调和算子的一类薄障碍型问题
Abstract: This paper investigates the regularity of solutions and structural properties of the free boundary for a class of fourth-order elliptic problems with Neumann-type boundary conditions. The singular and degenerate elliptic operators studied naturally emerge from the extension procedure for higher-order fractional powers of the Laplacian, while the choice of non-linearity considered encompasses two-phase boundary obstacle problems as a special case. After establishing local regularity properties of solutions, Almgren- and Monneau-type monotonicity formulas are derived and utilized to carry out a blow-up analysis and prove a stratification result for the free boundary.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.