Quantum Physics
[Submitted on 15 Sep 2025
]
Title: Quantum Noise Tomography with Physics-Informed Neural Networks
Title: 量子噪声层析成像与物理信息神经网络
Abstract: Characterizing the environmental interactions of quantum systems is a critical bottleneck in the development of robust quantum technologies. Traditional tomographic methods are often data-intensive and struggle with scalability. In this work, we introduce a novel framework for performing Lindblad tomography using Physics-Informed Neural Networks (PINNs). By embedding the Lindblad master equation directly into the neural network's loss function, our approach simultaneously learns the quantum state's evolution and infers the underlying dissipation parameters from sparse, time-series measurement data. Our results show that PINNs can reconstruct both the system dynamics and the functional form of unknown noise parameters, presenting a sample-efficient and scalable solution for quantum device characterization. Ultimately, our method produces a fully-differentiable digital twin of a noisy quantum system by learning its governing master equation.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.