Computer Science > Artificial Intelligence
[Submitted on 15 Sep 2025
]
Title: A Dimensionality-Reduced XAI Framework for Roundabout Crash Severity Insights
Title: 一种用于环形交叉口碰撞严重性洞察的降维XAI框架
Abstract: Roundabouts reduce severe crashes, yet risk patterns vary by conditions. This study analyzes 2017-2021 Ohio roundabout crashes using a two-step, explainable workflow. Cluster Correspondence Analysis (CCA) identifies co-occurring factors and yields four crash patterns. A tree-based severity model is then interpreted with SHAP to quantify drivers of injury within and across patterns. Results show higher severity when darkness, wet surfaces, and higher posted speeds coincide with fixed-object or angle events, and lower severity in clear, low-speed settings. Pattern-specific explanations highlight mechanisms at entries (fail-to-yield, gap acceptance), within multi-lane circulation (improper maneuvers), and during slow-downs (rear-end). The workflow links pattern discovery with case-level explanations, supporting site screening, countermeasure selection, and audit-ready reporting. The contribution to Information Systems is a practical template for usable XAI in public safety analytics.
Submission history
From: Rohit Chakraborty [view email][v1] Mon, 15 Sep 2025 23:59:07 UTC (1,040 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.