Computer Science > Human-Computer Interaction
[Submitted on 18 Sep 2025
(v1)
, last revised 1 Oct 2025 (this version, v2)]
Title: Confirmation Bias as a Cognitive Resource in LLM-Supported Deliberation
Title: 确认偏误作为LLM支持的审议中的认知资源
Abstract: Large language models (LLMs) are increasingly used in group decision-making, but their influence risks fostering conformity and reducing epistemic vigilance. Drawing on the Argumentative Theory of Reasoning, we argue that confirmation bias, often seen as detrimental, can be harnessed as a resource when paired with critical evaluation. We propose a three-step process in which individuals first generate ideas independently, then use LLMs to refine and articulate them, and finally engage with LLMs as epistemic provocateurs to anticipate group critique. This framing positions LLMs as tools for scaffolding disagreement, helping individuals prepare for more productive group discussions.
Submission history
From: Sander De Jong [view email][v1] Thu, 18 Sep 2025 10:32:52 UTC (69 KB)
[v2] Wed, 1 Oct 2025 11:06:32 UTC (69 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.