Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Sep 2025
]
Title: Pseudo-Label Enhanced Cascaded Framework: 2nd Technical Report for LSVOS 2025 VOS Track
Title: 伪标签增强级联框架:LSVOS 2025 VOS赛道第二份技术报告
Abstract: Complex Video Object Segmentation (VOS) presents significant challenges in accurately segmenting objects across frames, especially in the presence of small and similar targets, frequent occlusions, rapid motion, and complex interactions. In this report, we present our solution for the LSVOS 2025 VOS Track based on the SAM2 framework. We adopt a pseudo-labeling strategy during training: a trained SAM2 checkpoint is deployed within the SAM2Long framework to generate pseudo labels for the MOSE test set, which are then combined with existing data for further training. For inference, the SAM2Long framework is employed to obtain our primary segmentation results, while an open-source SeC model runs in parallel to produce complementary predictions. A cascaded decision mechanism dynamically integrates outputs from both models, exploiting the temporal stability of SAM2Long and the concept-level robustness of SeC. Benefiting from pseudo-label training and cascaded multi-model inference, our approach achieves a J\&F score of 0.8616 on the MOSE test set -- +1.4 points over our SAM2Long baseline -- securing the 2nd place in the LSVOS 2025 VOS Track, and demonstrating strong robustness and accuracy in long, complex video segmentation scenarios.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.