Astrophysics > Solar and Stellar Astrophysics
[Submitted on 18 Sep 2025
]
Title: Turn up the light: Radiative efficiency of protostars at birth
Title: 调高光线:恒星诞生时的辐射效率
Abstract: Early stages of stellar birth comprise of a two-step process involving the formation of two hydrostatic cores. The second step of gravitational collapse sets the radiative efficiency and accretion rate of the young protostar. These two parameters, of prime importance for protostellar evolution, dictate the luminosities and thus play a key role in deciphering the current discrepancy between observational surveys and theoretical models. In this letter, we provide quantitative estimates on the evolution of the radiative efficiency and accretion rate obtained from self-consistent, high-resolution, radiative hydrodynamic simulations performed using the codes PLUTO and RAMSES. The main highlight of our result is that the radiative efficiency reaches unity, that is, supercriticality, relatively quickly after protostellar birth. Supercriticality at the accretion shock is a necessary condition for cold accretion. Our results thus support a rapid transition to the cold accretion scenario, which is one of the assumptions used in Pre-Main Sequence (PMS) models working towards solutions to explain observational data. We briefly discuss the implications of the time evolution of the radiative efficiency factor in the context of the luminosity problem, the Protostellar Luminosity Function (PLF), PMS evolution, accurate sink properties, and the stellar Initial Mass Function (IMF).
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.